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Abstract

1 Diagnosing approximation algorithm with SBC
and PSIS

We aim to introduce a framework for validating and correcting approximation
algorithm. Simulation-based calibration (SBC) (and PSIS further) is applied on
embedded Laplace approximation. SBC is one of the few tools that could examine
choice of computational method (Talts et al., 2018). Two things should be noted
for SBC. First, SBC validates the combination of approximate algorithm, model,
and prior. Therefore, when SBC test fails, non-unifrom SBC rank histogram
for example, it does not pinpoint the cause of the problem; only the fact that
something is wrong. Algorithm, likelihood, and prior should be tested with an
extra care on their dependency which requires principled workflow as in Gabry
et al. (2019) and Schad et al. (2020). As this paper is focused on calibrating
the algorithm, prior and likelihood model are fixed, but the fact that SBC test
results on algorithm validity corresponds to only the subset of the entire model
space should be noted. Second, to do SBC, reasonably informative priors are
needed to avoid simulating unrealistic parameter values. SBC tests not only
likelihood but also prior; and it is highly prior-sensitive. In real world data-fitting
situation, the existence of data offsets the effect of mis-specified prior. But in
SBC, data itself is generated from the prior upon which the model is fitted to
retrieve the parameters. This relation between simulated dataset and retrieved
parameters would be elaborated in section 2.2. Example of setting the SBC
prior could be found in Talts et al. (2018) where gaussian process priors were
specified to ensure Pr(ρ < 0.1) = Pr(σ > 1) = 0.1 given the data, to test INLA.

Probabilistic nature of this calibration has advantages to the worst-case fre-
quentist calibration: it’s easier to (approximately) implement in practice using
simulations and it focuses on the model configurations consistent with our prior
model instead of more extreme model configurations. However, its ability to
test the average performance on multiple components (algorithm, prior, and
likelihood) is not always helpful, especially when the aim is to test a specific
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parameter settings and data. Good performance on average might not hold for a
particular realization of the data and if the observed data is not well represented
by the model, diagnostic would be ineffective. This is the price SBC pays for
averaging over all priors (Yao et al., 2018) which leads to the need for PSIS
validation where diagnosis is more specificed in terms or data and parameters.

Margossian et al. (2020) proposed an algorithm that efficiently differentiate
the Laplace approximation and showed the benefits of running HMC only on
the hyperparameter space by marginalizing out the parameters. This could
achieve both greater speed and less tuning efforts, and therefore accuracy,
compared to the standard model especially for latent gaussian models with
Poisson (section 2)and Bernoulli (section 3) likelihood. SBC could diagnose
the validity of this algorithm, which we would refer to as embedded Laplace
approximation, and further provide a feedback for improvement. Embedded
Laplace approximation aims to approximate the full HMC model where HMC
is run on joint hyperparameter and parameter space. The process of SBC for
approximate algorithm is as follows. First, parameters are simulated from the
given prior. Second, data is simulated based on the likelihood of standard model
and its simulated parameter. Third, simulated data is fitted with approximation
algorithm which leads to posterior. Lastly, posterior and prior sample is compared.
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When π (θl | y) = π (θ0 | y), the rank statistics are proven to be uniform (Ap-
pendix 4.1). In other words, degree of SBC histogram uniformity would indicate
the accuracy of the approximate algorithm: posterior inference. Any discrepancy
of its inference would affect the rank (

∫
du(y)[u(y)]r[1 − u(y)]L−r term from

the proof) with the manifestation of its type, such as the direction of bias and
dispersion.

2 Gaussian process with a Poisson likelihood

2.1 SBC test results
Vanhatalo et al. (2010) models the mortality count across Finland and out of 911
countries we have randomly selected 20 counties for SBC. As prior settings are
solely the responsibility of the modeler, different distribution, location, and scale
of α and ρ priors are experimented. Slight difference was observed but for clarity,
we suggest some representative results; see Appendix 4.2 for SBC histogram
on different prior settings. Although, some ragged patterns are observed, both
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hyperparameters (α and ρ) and parameter (θ) are within the bound of credible
interval (Figure 1). The interval signifies the 0.005 quantile to the 0.995 quantile
of the Binomial

(
N, (L+ 1)−1

)
distribution. Bins is the number of bins whose

values is 20, following the recommendation of (Talts et al., 2018). It is expected
that, on average, the counts in only one bin a hundred will deviate outside this
shaded interval. However, when observed with empirical cumulative distribution
function (ECDF) which helps detect the deviation at both extremes (Talts et al.,
2018), slight deviation was observed for θ, the latent parameter. This bias
implies embedded Laplace approximation tends to underestimate the parameter.
Note that the intervals are based on repeated predictive values from uniform
distribution (Talts et al., 2018).

Figure 1: SBC histogram for disease map data with half-Normal prior

Figure 2: SBC ECDF for disease map data with half-Normal prior
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2.2 Understanding SBC with simulated y and parameter
Figure 3 shows twenty sets of simulated y and the original mean ye (red) from
π (yi | θ) = Poisson

(
yiee

θi
)
. Poisson likelihood model with half normal prior

N + (0, 12) for α and ρ was used to simulate y. Extreme realized value from
simulation set 7 (green) and 20 (orange) are highlighted. Table 1 compares
fitting time, log-likelihood, and retrieved parameter values, for three different
simulated y datasets; set with short fitting time and two sets where extreme y
values were simulated. Fitting time varied in scales of hundreds (shortest: 0.4s,
longest: 76s) and much higher log probability was observed for the set with
shorter fitting time. Simulation set with the most extreme value had highest α
and lowest ρ. As large α and small ρ contribute to higher frequency outcomes,
retrieved hyperparameter values are understandable.
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Figure 3: simulated y values
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Table 1: simulated y sets comparison

simulation set fitting time lp α ρ

4 0.43s -80 0.25 0.72

20 1.5S -109 1.44 0.66

7 76s -121 1.21 0.49

As our main concern is testing the algorithm, different prior settings are not
discussed in detail in this paper. However, we note that when heavy tailed
prior was experimented, inverse-gamma for example, unreasonable values were
simulated more frequently leading to SBC test failure (see Appendix 4.2).

3 General linear regression model with a regular-
ized horseshoe prior

For Bernoulli likelihood, general linear regression model with a regularized
horseshoe prior is used. Figure 4, shows SBC histogram of selected four hyper-
parameters. λ1 and λ86 each represents coefficient for minor and major cancer
factor. Figure 5 shows ECDF for the parameters. Though log scaled parameters
are quantities of interest, log is a monotone function and therefore, SBC rank
comparison was performed on the original scale. While slight overestimation
could be checked for τ , other parameters are within the bounds. p is a probability
vector of each patient having a cancer and is the function of latent parameter.
Components corresponding to five patients were tested. Both SBC histogram
and ECDF imply that the approximation overestimates the cancer probability
(Figure 6).

Figure 4: SBC histogram for hyperparamters in prostate cancer data
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Figure 5: SBC ECDF for hyperparamters in prostate cancer data

Figure 6: SBC histogram for cancer probability
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Figure 7: SBC ECDF for cancer probability

Several prior and data averaged posterior samples were compared for each
parameter. For the latter, mean values of posterior samples are used for the plot.
Note that underscored are prior samples. As can be seen from Figure 8, both
major and minor factors showed the tendency to overestimate the values even
though SBC histogram and ECDF test did not flagged any problem. This could
be the result of SBC being underpowered. For the probability of certain patients
getting a cancer, the approximation algorithm showed tendency to balance out
the probability between two extremes, 0 and 1, which is not surprising as Laplace
approximation is known to avoid extreme values of the probability.

Figure 8: Compare λ prior and data averaged posterior samples
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Figure 9: Compare cancer probability prior and data averaged posterior samples

4 Appendix

4.1 SBC Proof
The probability of the rank, r, of a prior sample, θ0, relative to L posterior
samples

{
θ̃1, . . . , θ̃L

}
, conditioned on an intermediate data simulation, ỹ

θ̃0 ∼ π(θ)

ỹ ∼ π
(
y | θ̃0

)
{
θ̃1, . . . , θ̃L

}
∼ π(θ | ỹ)
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is given by

π(r) =

∫
dθ0dyπ (y, θ0)
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Because the posterior samples are independent of the prior sample conditioned

on the data we have

π (θl | θ0, y) = π (θl | y)
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r!(L− r)!
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Because we’re simulating model configurations and observations from the

same model from which our posterior is constructed

π (θl | y) = π (θ0 | y)
In particular we can consider the change of variables

u(y) =

∫ θ0

−∞
dθπ(θ | y)

which gives

π(r) =
L!

r!(L− r)!

∫
dyπ(y)

∫
du(y)[u(y)]r[1− u(y)]L−r

=
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∫
dyπ(y)
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=
1
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∫
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=
1
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4.2 SBC on Different Prior Settings

Figure 10: SBC histogram with different prior parameters and shape

SBC histograms corresponding to different prior distributions, normal, t, and
invese gamma are compared in Figure10. ρ parameter for inverse gamma prior
is interesting. Heavy tail prior could have caused large variance in simulated y
values and therefore imposed small values on data averaged posterior sample of
ρ.
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