Stan
Korea

Hyperbolic and Manifold sampling

Hyunji Moon Industrial Engineering, SNU

CONTENTS

1_ Hyperbolic googling
2 Hyperbolic representation

3 Implemented examples

+ Hyperbolic sampler

I The shape of space (textbook)

NS o w o

Topology vs. geometry
Intrinsic vs. extrinsic properties
Local vs. global properties

Homogeneous vs. nonhomogeneous geometries
Closed vs. open manifolds

change X O when the surface is deformed

Flatlanders living in the surfaces (topologically) tell one
from the other O X (diff. embedding)

small region vs mfd as a whole. local geometry global
topology. flat torus and doughnut surface have the same
global topology, but different local geometries.

local geometry is the same O X at all points. ure 3.7
parameterization-invariant.

given no boundary (= edges?) + cpt vs non cpt component

The hemisphere, the plane, and the saddle surface
all have different intrinsic geometries.

5.23 vs 1000 (1 degree off in 300 radius)

I
TN | YT PP .
=

- 2\ - Hyperbolic tree and geodesic
- Hyperbolic browser in information
retrieval

- upper plane: 2D Hyperbolic
space in euclidean space
= - most area of H space mapped
‘ into the region near real axis

an ideal hexagon an ideal triangle a triangle g Stan

Two hyperbolic models

This is known as the Poincaré it is known as the Beltrami Klein model
disk model of the hyperbolic plane.

preserve straight line, not angle & area
Stan

Hyperbolic?

- hyperbolic polynomial p w.r.te: p(e)>0,t— p(x -
te) has only real roots for all vector x € Rn. can be
generalized to all e.

- t->-x1-H)(x2-t)- - -(xn-t)w.rt (1, ... ,1)
- hyperbolic cone
- fromx, slidealA+y :={zeR":p(x —te) =0 = t >0}
meet p(x) = 0 vs opposite direction cross it n times
- convex, convex optimization problems with
nonnegative constraints
- hyperbolic exponential family: canonical parameters
form a convex cone, partition (A: log partition) function
2 Ty is the power of a homogeneous polynomial

4xyz + xz2 +yz2 +2z3 -x3 - 3zx2 - _ po(z) = eXp(—<¢9, T(z)) — A(6))

y3 — 3zy2 hyperbolic (w.r.t (0, 0, 1)) eg. normal A(6) = —%logdet(a)-l— %nlog(%)

- construction of exponential families from complete

. : o hyperbolic polynomials
ref: exponential varieties yp poly gStan

https://arxiv.org/abs/1412.6185

From (function, space) to (sampler, manifold)

Sampler _
~ MC, MCMC, ParVl, IS W = dw

oS Q2

Manifold
- Sphere, Euclidean, Hyperbolic
- metric: wasserstein space

better sampler while remain the space fixed?

Better sampler?

not just log p(@,x)

Evaluation of the model on the unconstrained scale

py (y) =px(f7'(y)) [det Ty (y) | need logdet calculation!

Better sampler

Sampling from a distribution supported on a manifold:

How to comply to the manifold geometry while being efficient?
Sampling on Probability Manifolds:

ParVIs have a natural optimization interpretation on a probability space.

When target measure is view as a point, we aim to converge to that point (measure) efficiently
-> need for metric (wass.)and geodesic (least action among admissible path)

2 1,. .
d(z,y) = \/mf%:'yo:w,w:y Jo (s ’Yt>Tﬁ,tM dt.

geodesic aka
- auto parallel curves under an affine
connection (covariant derivative)
- generalized straight line

Stan
Korea

Hyperbolic Representation

Better representation

analogous hyperbolic latent space and tree structure

minimum-distortion embedding

Hyperbolic?
Tree, Hierarchical, Factorization [64, 66, 73] :
factor matrices on Stiefel manifold [68, 33]
ref from this lecturenote

T{IM e RmMxn|MM=1Im}.

http://ml.cs.tsinghua.edu.cn/~changliu/static/ManifoldSampling-ChangLiu.pdf
https://twitter.com/akshaykagrawal/status/1374774666565361664

Hyperbolic and hierarchical structure
: representation

Hyperbolic space is a geometry that is known to be well-suited for representation
learning of data with an underlying hierarchical structure

- cognitive science: use a hierarchy to organise object categories
- biology: living organisms are related in a hierarchical manner given by the
evolutionary tree

Better representation

L N]
S={ }{gﬁ;" ﬁ
D= 151 952 4eees §p - -".,’ 7}-’= {Rj*l‘tjﬁ'l}
& =
e —— LAY £
Learned data B VN e
manifold : ' ‘!;‘ - Objects; .
o
Ry
b Tja={Rstj
.y -

. Objects;

Manifold induced by
articulated-based metric

L

dM(Zle’A{le) =k§1dM(ki’ T,{)

ref: https://www.intechopen.com/books/manifolds-ii-theory-and-applications/manifold-learning-in-medical-imaging

| Sk Y,
[A)$ ‘.@ Tj1=Rjntis
Me R4 T | odlias

data manifold

structured data (MR, CT,
ultrasound)

linear techniques unsuitable
for capturing variations in
anatomical structures
articulated structure metric
on {s,R,t} scaling, rotation,
translation

=k§1|| tz—t’k||+k§1da(i, R,)

Stan
Korea

Implemented examples

Continuous Hierarchical Representations with Poincaré VAE

- hyperbolic spaces alternative continuous approach to learn
hierarchical representations from textual graph-structured
data

- continuous version of tree, smooth and differentiable

- endow VAEs with a Poincaré ball model of hyperbolic
geometry as a latent space

- encoder: observation -> encoding (low dim latent space)

- decoder: encoding -> observation

- exponential growth of the Poincaré surface area with respect
to its radius ~ exponential growth of the number of leaves in a
tree with respect to its depth

- replace VAE's latent space from Euclidean metric to
hyperbolic

- benéeficial in terms of model generalisation and can yield more
interpretable representations

future work:
- best hyperbolic model for gradient-based learning
- principled way of assessing hierarchical data or not

https://proceedings.neurips.cc/paper/2019/file/0ec04cb3912c4f08874dd03716f80df1-Paper.pdf

|
Continuous-Time Birth-Death MCMC for Bayesian Regression Tree Models

- Bayesian additive regression trees sampling

Y X

- unlikely for a regression tree MCMC algorithm % oration at X

to fully explore the space of nearly equivalent rotation at Y

trees that have high posterior probability /\

ANWAN

- generalization of rotation mechanism found in b

the binary search tree literature (Sleator88); b ation st

Gramacy and Lee (2008) improve mixingofa . rotation at b

Bayesian treed Gaussian Process model by
applying the rotation algorithm from the Binary
Search Tree literature

c

ROTATION DISTANCE. TRIANGULATIONS, AND HYPERBOLIC GEOMETRY

https://jmlr.org/papers/volume21/19-307/19-307.pdf
https://www.ams.org/journals/jams/1988-01-03/S0894-0347-1988-0928904-4/S0894-0347-1988-0928904-4.pdf

Efficient Metropolis—Hastings Proposal Mechanisms
: propose rotate operation

RR

merge

RIT]

RcutRcut

merge

7]

rot

Riperge Rl s Ry o R [T

merge T,, TR
along X,<0.5

X<07 A X0 alor%g X2<O 5
/ \ / \ e\ / \
%\ / \ / \ / \ /N / \
/ \ / \
rotation for T to appear on both copies sub-tree merged along the rule
both sides X2 <0.5.

rule -> sub-trees

cut along the X1 < 0.6

Efficient Metropolis—Hastings Proposal Mechanisms

- more continuous and detect important variable (1, 3)
- discretized variable importance for 10 cv sets

e o
[ee) [ee)
o 7 S
2 3 2
2 © B ©
g oS] g oS
< <
o 11 1 222 2 B3) 11 22 22222
8 < | | < | 3
5 © 5 ©
> 1 2 2 3 > 1 1 3B
1 8 g8
o [V 14
° S] 1 3
3
24 111 1 333 3 S 3 3
Default Birth/Death Sampler ChV and Rotate Sampler

Wrapped Normal Distribution on Hyperbolic Space for
Gradient-Based Learning

(a) A tree representation of the

training dataset nee d :
R probability distributions on H that admit
0000011 oo1o) parametrization of density function that can be
Ooom{\mm Ow(ﬁ}(m computed analytically and differentiated
ANVARVARNA |
how:
(b) Vanilla VAE (8 = 1.0) @Hyperbolic VAE 1) defining Gaussian distribution on the tangent
> iR space at the origin of the hyperbolic space
: S, ’& ' f’ 2) transporting the tangent space to a desired
o B D W location in the space
& : ' { \’ 3) projecting the distribution onto hyperbolic space

https://arxiv.org/abs/1902.02992
https://arxiv.org/abs/1902.02992

Wrapped Normal Distribution on Hyperbolic Space for
Gradient-Based Learning

(a) (b) (©)
lorentz model

Parallel Transport
/ u="PT, .() Dol

Exponential Map
z = exp,(u)

H' ={z: (z,2)p = -5 + 23 = -1}

S

Z /’
Ti' Hy = (l, ())T 'l' THHI ”(/), ’
21 g ‘

Figure 2: (a) One-dimensional Lorentz model H! (red) and its tangent space T,,]HI1 (blue). (b) Parallel transport carries
v € T, (green) to u € T, (blue) while preserving || - ||z . (c) Exponential map projects the w € T}, (blue) to z € H"
(red). The distance between p and exp,, (u) which is measured on the surface of H" coincides with |[u/| .

H" = {z e R""': (2,2), = -1, 2z >0} v

(2,2 Ve = —202y + Z 2z,

i=1 6 §tan

Wrapped Normal Distribution on Hyperbolic Space for

Gradient-Based Learning

Algorithm 1 Sampling on hyperbolic space

Algorithm 2 Calculate log-pdf

Input: parameter p € H", X

Output: z € H”

Require: po = (1,0,---,0)" € H®

Sample ¥ ~ N (0,X%) € R”

v =[0,9] € T,,H"

Move v to u = PT,,,,.(v) € T,,H" by eq. (B)
Map u to z = exp,,(u) € H" by eq. (§)

Input: sample z € H", parameter u € H", X
Output: log p(z)

Require: po = (1,0,---,0)" € H”

Map z to u = exp},'(z) € T,H" by eq. (8)
Move u tov = PT,,,_, ,(u) € T, H" by eq. (@)
Calculate log p(z) by eq. (1)

8proj“('v)
ov

()

= det —Bexp“(u) - det, OPT o (V)
ou ov
sinh r

1 (norm preserving)
Stan

(=)

r

¥ develop ~

O

Code corner

stan [src / stan [mcmc [hmc /

rok-cesnovar fix double include

hamiltonians
integrators
nuts
nuts_classic
static
static_uniform
xhmce

base_hmc.hpp

¥ develop ~

O

rok-cesnovar fix double include

[base_hamiltonian.hpp
fix double include
[% dense_e_metric.hpp
cleanup includes of Eigen/*
i [% dense_e_point.hpp
¥ develop ¥ stan/src/stan/mcmc/hmc /integrators/
[diag_e_metric.hpp
O rok-cesnovar cleanup includes of Eigen/* (9 diag_e_point.hpp
[% ps_point.hpp
[softabs_metric.hpp
[base_integrator.hpp Revert
[softabs_point.hpp
[% base_leapfrog.hpp Revert B uniiemefdchpp
[expl_leapfrog.hpp fixinclt it 8 BIHERED
[impl_leapfrog.hpp cleanup includes of Eigen/*

stan / src [/ stan [mcmc [hmc [hamiltonians /

cleanup il
cleanup il
removed
Revert "R
removed

fix double
Fix mix in
Revert "R
Revert "R

Revert "R

Code corner: expl vs impl

H(w,p) = ~l0g (f(w)) + 3 log ((2)"IM]) + ;p M 'p

I;[(W,p,(:b,f)) = Hl(waf)) I H2(GJ7 P) + Qh(wapa‘baﬁ)

Algorithm 1 Implicit Leapfrog Step

Algorithm 2 Explicit Leapfrog Step

% I:P“t:; Po, Wo, €, - computationally expensive %
? Bl - implicit (fixed point))
i: wale A_p > 009 first-order Euler integrators -
P =pot 552 (P wo) run until convergence 4:

5 Ap = ma'xz{lpz p1,|} S:
6: p=p 6:
7: end while T:
8: w=wp]:
9: while Aw > § do 0
10: o' =wo+ 592 (P,wo) + 5§92 (P, w) 10:
[z Aw = max;{|w; — w}|} 11
12: w=w 12;
13: end while 13:
14: p=p+ % 2 dr a(p,w) 14:

Inputs: p, w, p,@, €, 2

P=pP— 59,H(w,p)

W=+ 50pH(w, P)
f)-:ﬁ_%a&H(&ap)

w=w+ 50pH(w, p)

¢ = cos(202¢), s = sin(202€)
w=(w+w+c(w-w)+s(p-p))/2
P=({P+pP—s(w-w)+c(p—p))/2
W=(wt+w—clw—@)—s(p—p))/2
P=(p+Pp+sw—o)—clp-p))/2

i p=p— §05H(&,p)

w + §6pH(GJ, p)
p - %&.:H(w, 1‘5)
+ 50pH(w, p)

€T €
Il

Code corner: expl vs impl

class expl_leapfrog : public base_leapfrog<Hamiltonian> {
public:
expl_leapfrog() : base_leapfrog<Hamiltonian>() {}

void begin_update_p(typename Hamiltonian::PointType& z,
Hamiltonian& hamiltonian, double epsilo
callbacks::logger& logger) {

z.p -= epsilon * hamiltonian.dphi_dq(z, logger);

}

void update_g(typename Hamiltonian::PointType& z, Hamiltoni
double epsilon, callbacks::logger& logger) {
z.q += epsilon * hamiltonian.dtau_dp(z);
hamiltonian.update_potential_gradient(z, logger)

}

void end_update_p(typename Hamiltonian::PointType& z,
Hamiltonian& hamiltonian, double epsilon,
callbacks::logger& logger) {

z.p -= epsilon % hamiltonian.dphi_dq(z, logger)

}

b

implicit: computationally
expensive, first-order implicit Euler
integrators run until fixed-point
iterations run until convergence

class impl_leapfrog :
public:

public base_leapfrog<Hamiltonian> {

impl_leapfrog()

: base_leapfrog<Hamiltonian>(),
max_num_fixed_point_(10),
fixed_point_threshold_(1e-8) {}

void begin_update_p(typename Hamiltonian::PointType& z,

}

void update_g(typename Hamiltonian::PointType& z, Hamiltonian& hamiltonia

Hamiltonian& hamiltonian, double epsilon,
callbacks::logger& logger) {
hat_phi(z, hamiltonian, epsilon, logger);

hat_tau(z, hamiltonian, epsilon, this->max_num_fixed_point_, logger);

double epsilon, callbacks::logger& logger) {
// hat{T} = dT/dp * d/dq

Eigen::VectorXd g_init = z.q + 0.5 * epsilon * hamiltonian.dtau_dp(z);

Eigen::VectorXd delta_q(z.q.size());

for (int n = @; n < this->max_num_fixed_point_; ++n) {

delta_q = z.q;

z.g.noalias() = g_init + @.5 * epsilon * hamiltonian.dtau_dp(z);
hamiltonian.update_metric(z, logger);

delta_q -= z.q;
if (delta_q.cwiseAbs().maxCoeff() < this->fixed_point_threshold_)
break;
¥
hamiltonian.update_gradients(z, logger);

void end_update_p(typename Hamiltonian::PointType& z,

}

Hamiltonian& hamiltonian, double epsilon,
callbacks::logger& logger) {

hat_tau(z, hamiltonian, epsilon, 1, logger);

hat_phi(z, hamiltonian, epsilon, logger);

// hat{phi} = dphi/dg % d/dp
void hat_phi(typename Hamiltonian::PointType& z, Hamiltonian& hamiltonian,
double epsilon, callbacks::logger& logger) {
z.p -= epsilon x hamiltonian.dphi_dq(z, logger)

}

// hat{tau} = dtau/dq x d/dp
void hat_tau(typename Hamiltonian::PointType& z, Hamiltonian& hamiltonian,
double epsilon, int num_fixed_point, callbacks::logger& logger) {|
Eigen::VectorXd p_init = z.p;
Eigen::VectorXd delta_p(z.p.size());

for (int n = 0; n < num_fixed_point; ++n) {
delta_p = z.p;
z.p.noalias() = p_init - epsilon % hamiltonian.dtau_dq(z, logger)
delta_p -= z.p;
if (delta_p.cwiseAbs().maxCoeff() < this->fixed_point_threshold_)
break;

int max_num_fixed_point() { return this->max_num_fixed_point_; }

void set_max_num_fixed_point(int n) {
if (n>0)
this->max_num_fixed_point_ = n;

double fixed_point_threshold() { return this->fixed_point_threshold_; }
void set_fixed_point_threshold(double t) {

if (t > 0)
this->fixed_point_threshold_ = t;

Thank You,

Stan

