

Hyperbolic and Manifold sampling

Hyunji Moon Industrial Engineering, SNU

CONTENTS

- **1__Hyperbolicgoogling**
- **2__** Hyperbolic representation
- **3__** Implemented examples
- **+ Hyperbolicsampler**

The shape of space (textbook)

- Topology vs. geometry
- Intrinsic vs. extrinsic properties 2.
- Local vs. global properties 3.
- Homogeneous vs. nonhomogeneous geometries 4.
- 5. Closed vs. open manifolds
- change X O when the surface is deformed
- 2. Flatlanders living in the surfaces (topologically) tell one from the other $O X$ (diff. embedding)
- 3. small region vs mfd as a whole. local geometry global topology. flat torus and doughnut surface have the same global topology, but different local geometries.
- 4. local geometry is the same O X at all points. parameterization-invariant.
- 5. given no boundary (= edges?) + cpt vs non cpt component

ure 3.7 The hemisphere, the plane, and the saddle surface all have different intrinsic geometries.

5.23 vs 10^100 (1 degree off in 300 radius)

- Hyperbolic tree and geodesic
- Hyperbolic browser in information retrieval
- upper plane: 2D Hyperbolic space in euclidean space
- most area of H space mapped into the region near real axis

an ideal hexagon

an ideal triangle

a triangle

Two hyperbolic models

preserve straight line, not angle & area

Stan K araa

Hyperbolic?

ref: [exponential varieties](https://arxiv.org/abs/1412.6185)

- **hyperbolic polynomial** p w.r.t e: $p(e) > 0$, $t \rightarrow p(x$ te) has only real roots for all vector $x \in Rn$. can be generalized to all e.
	- $t \rightarrow (x1 t)(x2 t) \cdot \cdot \cdot (xn t)$ w.r.t (1, ..., 1)
- **hyperbolic cone**
	- from x, slide $a \Delta_{++} := \{x \in \mathbb{R}^n : p(x te) = 0 \Rightarrow t > 0\}$ meet $p(x) = 0$ vs opposite direction cross it n times
	- convex, convex optimization problems with nonnegative constraints
- **- hyperbolic exponential family**: canonical parameters form a convex cone, partition (A: log partition) function is the power of a homogeneous polynomial
	- $p_{\theta}(x) = \exp(-\langle \theta, T(x) \rangle A(\theta))$
	- eg. normal $A(\theta) = -\frac{1}{2}\log \det(\theta) + \frac{m}{2}\log(2\pi)$
	- construction of exponential families from complete hyperbolic polynomials

From (function, space) to (sampler, manifold)

Sampler

- MC, MCMC, ParVI, IS

 $\int_{\partial\Omega}\omega=\int_{\Omega}d\omega$

Stan K araa

Manifold

- Sphere, Euclidean, Hyperbolic
- metric: wasserstein space

better sampler while remain the space fixed?

Better sampler?

not just $\log p(\theta, x)$

Evaluation of the model on the unconstrained scale

$$
p_Y(y) = p_X(f^{-1}(y)) \left[\det J_{f^{-1}}(y) \right]
$$

need logdet calculation!

Better sampler

Sampling from a distribution supported on a manifold:

How to comply to the manifold geometry while being efficient?

Sampling on Probability Manifolds:

ParVIs have a natural optimization interpretation on a probability space. When target measure is view as a point, we aim to **converge** to that point (measure) **efficiently ->** need for **metric (wass.)**and **geodesic (least action among admissible path)**

$$
d(x,y) = \sqrt{\inf_{\gamma_t:\gamma_0=x,\gamma_1=y} \int_0^1 \langle \dot{\gamma}_t, \dot{\gamma}_t \rangle_{T_{\gamma_t}\mathcal{M}}} \, \mathrm{d}t.
$$

geodesic aka

- auto parallel curves under an affine connection (covariant derivative)
- generalized straight line

Hyperbolic Representation

Better representation [minimum-distortion embedding](https://twitter.com/akshaykagrawal/status/1374774666565361664)(b) Hammer projection of S^2 latent space of the S-VAE. (a) \mathbb{R}^2 latent space of the $\mathcal{N}\text{-VAE}$. Hyperbolic? Tree, Hierarchical, Factorization [64, 66, 73] : factor matrices on Stiefel manifold [68, 33] ref from [this](http://ml.cs.tsinghua.edu.cn/~changliu/static/ManifoldSampling-ChangLiu.pdf) lecturenote \top { M \in R m×n | M M = I m }.

analogous hyperbolic latent space and tree structure

Hyperbolic and hierarchical structure : representation

Hyperbolic space is a geometry that is known to be well-suited for representation learning of data with an underlying hierarchical structure

- cognitive science: use a hierarchy to organise object categories
- biology: living organisms are related in a hierarchical manner given by the evolutionary tree

Better representation

- data manifold
- structured data (MRI, CT, ultrasound)
- linear techniques unsuitable for capturing variations in anatomical structures
	- articulated structure metric on {s,R,t} scaling, rotation, translation

$$
d_M\left(\mathbf{A}_{\text{abs}}^i,\mathbf{A}_{\text{abs}}^j\right)=\sum_{k=1}^L d_M\left(T_k^i,T_k^j\right)=\sum_{k=1}^L\parallel \mathbf{t}_k^i-\mathbf{t}_k^j\parallel+\sum_{k=1}^L d_G\left(\mathbf{R}_k^i,\mathbf{R}_k^j\right)
$$

Implemented examples

[Continuous Hierarchical Representations with Poincaré VAE](https://proceedings.neurips.cc/paper/2019/file/0ec04cb3912c4f08874dd03716f80df1-Paper.pdf)

- hyperbolic spaces alternative continuous approach to learn hierarchical representations from textual graph-structured data
- continuous version of tree, smooth and differentiable
- endow VAEs with a Poincaré ball model of hyperbolic geometry as a latent space
- encoder: observation -> encoding (low dim latent space)
- decoder: encoding -> observation
- exponential growth of the Poincaré surface area with respect to its radius \sim exponential growth of the number of leaves in a tree with respect to its depth
- replace VAE's latent space from Euclidean metric to hyperbolic
- beneficial in terms of model generalisation and can yield more interpretable representations

future work:

- best hyperbolic model for gradient-based learning
- principled way of assessing hierarchical data or not

Poincare disc model embedding

[Continuous-Time Birth-Death MCMC for Bayesian Regression Tree Models](https://jmlr.org/papers/volume21/19-307/19-307.pdf)

- Bayesian additive regression trees sampling
- unlikely for a regression tree MCMC algorithm to fully explore the space of nearly equivalent trees that have high posterior probability
- generalization of rotation mechanism found in the binary search tree literature (Sleator88); Gramacy and Lee (2008) improve mixing of a Bayesian treed Gaussian Process model by applying the rotation algorithm from the Binary Search Tree literature

ROTATION DISTANCE, TRIANGULATIONS, AND HYPERBOLIC GEOMET

Efficient Metropolis-Hastings Proposal Mechanisms : propose rotate operation

$$
\mathcal{R}[T] = \mathcal{R}^{L}_{merge} \mathcal{R}^{R}_{merge} \mathcal{R}^{L}_{cut} \mathcal{R}^{R}_{cut} \mathcal{R}^{R}_{rot}[T]
$$

Efficient Metropolis-Hastings Proposal Mechanisms

- more continuous and detect important variable (1, 3) $\overline{}$
- discretized variable importance for 10 cv sets $\qquad \qquad -$

[Wrapped Normal Distribution on Hyperbolic Space for](https://arxiv.org/abs/1902.02992) [Gradient-Based Learning](https://arxiv.org/abs/1902.02992)

(a) A tree representation of the training dataset

need:

probability distributions on H that admit parametrization of density function that can be computed analytically and differentiated

how:

1) defining Gaussian distribution on the tangent space at the origin of the hyperbolic space 2) transporting the tangent space to a desired location in the space

3) projecting the distribution onto hyperbolic space

Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning (b) (a) (c) lorentz model
 $\mathbb{H}^1 = \{z : \langle z, z \rangle_{\mathcal{L}} = -z_0^2 + z_1^2 = -1\}$ Parallel Transport **Exponential Map** $u = PT_{\mu_0 \to \mu}(v)$ $z = \exp_u(u)$ $\mu_0 = (1, 0)^{\top}$

Figure 2: (a) One-dimensional Lorentz model \mathbb{H}^1 (red) and its tangent space $T_{\mu} \mathbb{H}^1$ (blue). (b) Parallel transport carries $v \in T_{\mu_0}$ (green) to $u \in T_{\mu}$ (blue) while preserving $\|\cdot\|_{\mathcal{L}}$. (c) Exponential map projects the $u \in T_{\mu}$ (blue) to $z \in \mathbb{H}^n$ (red). The distance between μ and $\exp_{\mu}(\mu)$ which is measured on the surface of \mathbb{H}^n coincides with $\|\mu\|_{\mathcal{L}}$.

$$
\mathbb{H}^{n} = \left\{ z \in \mathbb{R}^{n+1} : \langle z, z \rangle_{\mathcal{L}} = -1, \ z_{0} > 0 \right\}
$$
\n
$$
z = \exp_{\mu}(\boldsymbol{u}) = \cosh \left(\|\boldsymbol{u}\|_{\mathcal{L}} \right) \mu + \sinh \left(\|\boldsymbol{u}\|_{\mathcal{L}} \right) \frac{\boldsymbol{u}}{\|\boldsymbol{u}\|_{\mathcal{L}}}
$$
\n
$$
\left\| z, z' \right\|_{\mathcal{L}} = -z_{0} z'_{0} + \sum_{i=1}^{n} z_{i} z'_{i},
$$
\nStan

 K araa

Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning

Algorithm 1 Sampling on hyperbolic space

Input: parameter $\mu \in \mathbb{H}^n$, Σ **Output:** $z \in \mathbb{H}^n$ **Require:** $\mu_0 = (1, 0, \dots, 0)^\top \in \mathbb{H}^n$ Sample $\tilde{v} \sim \mathcal{N}(0, \Sigma) \in \mathbb{R}^n$ $\boldsymbol{v} = [0,\tilde{\boldsymbol{v}}] \in T_{\boldsymbol{\mu}_0} \mathbb{H}^n$ Move v to $\mathbf{u} = \mathrm{PT}_{\mathbf{u}_0 \to \mathbf{u}}(\mathbf{v}) \in T_{\mathbf{u}} \mathbb{H}^n$ by eq. (**B**) Map u to $z = \exp_u(u) \in \mathbb{H}^n$ by eq. (**b**)

Algorithm 2 Calculate log-pdf

Input: sample $\mathbf{z} \in \mathbb{H}^n$, parameter $\mu \in \mathbb{H}^n$, Σ **Output:** $\log p(z)$ **Require:** $\mu_0 = (1, 0, \dots, 0)^\top \in \mathbb{H}^n$ Map z to $u = \exp_u^{-1}(z) \in T_\mu \mathbb{H}^n$ by eq. (b) Move u to $v = PT_{\mu_0 \to \mu}^{-1}(u) \in T_{\mu_0} \mathbb{H}^n$ by eq. (4) Calculate $\log p(z)$ by eq. (\Box)

$$
\det\left(\frac{\partial \operatorname{proj}_{\mu}(v)}{\partial v}\right)
$$
\n
$$
= \det\left(\frac{\partial \operatorname{exp}_{\mu}(u)}{\partial u}\right) \cdot \det\left(\frac{\partial \operatorname{PT}_{\mu_0 \to \mu}(v)}{\partial v}\right)
$$
\n
$$
= \frac{\left(\sinh r\right)^{n-1}}{r} = 1 \text{ (norm preserving) }\text{Stan}
$$

Code corner

 K araa

Code corner: expl vs impl

$$
H(\boldsymbol{\omega},\mathbf{p})=-\log\left(f(\boldsymbol{\omega})\right)+\frac{1}{2}\log\left((2\pi)^D|\mathbf{M}|\right)+\frac{1}{2}\mathbf{p}^\top\mathbf{M}^{-1}\mathbf{p} \qquad \tilde{H}(\boldsymbol{\omega},\mathbf{p},\tilde{\boldsymbol{\omega}},\tilde{\mathbf{p}})=H_1(\boldsymbol{\omega},\tilde{\mathbf{p}})+H_2(\tilde{\boldsymbol{\omega}},\mathbf{p})+ \varOmega h(\boldsymbol{\omega},\mathbf{p},\tilde{\boldsymbol{\omega}},\tilde{\mathbf{p}})
$$

Algorithm 2 Explicit Leapfrog Step **Algorithm 1** Implicit Leapfrog Step 1: Inputs: $\mathbf{p}_0, \boldsymbol{\omega}_0, \boldsymbol{\epsilon},$ 1: Inputs: $\mathbf{p}, \boldsymbol{\omega}, \tilde{\mathbf{p}}, \tilde{\boldsymbol{\omega}}, \epsilon, \Omega$ - computationally expensive 2: ${\bf p}={\bf p}_0$ 2: $\mathbf{p} = \mathbf{p} - \frac{\epsilon}{2} \partial_{\omega} H(\omega, \tilde{\mathbf{p}})$ - implicit (fixed point) 3: while $\Delta p > \delta$ do 3: $\tilde{\omega} = \tilde{\omega} + \frac{\epsilon}{2} \partial_{\tilde{\mathbf{p}}} H(\omega, \tilde{\mathbf{p}})$ first-order Euler integrators $\mathbf{p}' = \mathbf{p}_0 + \frac{\epsilon}{2} \frac{d\mathbf{p}}{d\tau}(\mathbf{p}, \boldsymbol{\omega}_0)$ 4: 4: $\tilde{\mathbf{p}} = \tilde{\mathbf{p}} - \frac{\epsilon}{2} \partial_{\tilde{\boldsymbol{\omega}}} H(\tilde{\boldsymbol{\omega}}, \mathbf{p})$ run until convergence5: $\Delta p = \max_i \{|p_i - p'_i|\}$ 5: $\omega = \omega + \frac{\epsilon}{2} \partial_{\mathbf{p}} H(\tilde{\boldsymbol{\omega}}, \mathbf{p})$ $6:$ $\mathbf{p} = \mathbf{p}'$ 6: $c = \cos(2\Omega \epsilon)$, $s = \sin(2\Omega \epsilon)$ 7: end while 7: $\omega = (\omega + \tilde{\omega} + c(\omega - \tilde{\omega}) + s(p - \tilde{p}))/2$ 8: $\omega = \omega_0$ 8: $\mathbf{p} = (\mathbf{p} + \tilde{\mathbf{p}} - s(\boldsymbol{\omega} - \tilde{\boldsymbol{\omega}}) + c(\mathbf{p} - \tilde{\mathbf{p}}))/2$ 9: while $\Delta \omega > \delta$ do 9: $\tilde{\omega} = (\omega + \tilde{\omega} - c(\omega - \tilde{\omega}) - s(p - \tilde{p}))/2$ $10:$ $\omega' = \omega_0 + \frac{\epsilon}{2} \frac{d\omega}{d\tau}(\mathbf{p}, \omega_0) + \frac{\epsilon}{2} \frac{d\omega}{d\tau}(\mathbf{p}, \omega)$ 10: $\tilde{\mathbf{p}} = (\mathbf{p} + \tilde{\mathbf{p}} + s(\boldsymbol{\omega} - \tilde{\boldsymbol{\omega}}) - c(\mathbf{p} - \tilde{\mathbf{p}}))/2$ $11:$ $\Delta\omega = \max_i \{|\omega_i - \omega'_i|\}$ 11: $\tilde{\mathbf{p}} = \tilde{\mathbf{p}} - \frac{\epsilon}{2} \partial_{\tilde{\boldsymbol{\omega}}} H(\tilde{\boldsymbol{\omega}}, \mathbf{p})$ $12:$ $\boldsymbol{\omega}=\boldsymbol{\omega}'$ 12: $\omega = \omega + \frac{\epsilon}{2} \partial_{\mathbf{p}} H(\tilde{\boldsymbol{\omega}}, \mathbf{p})$ 13: end while 13: $\mathbf{p} = \mathbf{p} - \frac{\epsilon}{2} \partial_{\omega} H(\omega, \tilde{\mathbf{p}})$ 14: $\mathbf{p} = \mathbf{p} + \frac{\epsilon}{2} \frac{d\mathbf{p}}{d\mathbf{p}} (\mathbf{p}, \boldsymbol{\omega})$ 14: $\tilde{\omega} = \tilde{\omega} + \frac{\epsilon}{2} \partial_{\tilde{\mathbf{p}}} H(\omega, \tilde{\mathbf{p}})$ Stan

Code corner: expl vs impl

class expl_leapfrog : public base_leapfrog<Hamiltonian> { public: expl_leapfrog() : base_leapfrog<Hamiltonian>() {}

```
void begin_update_p(typename Hamiltonian::PointType& z,
                   Hamiltonian& hamiltonian, double epsilc
                   callbacks:: logger& logger) {
 z.p = epsilon * hamiltonian.dphi(q(z, loqger));
```

```
void update_q(typename Hamiltonian::PointType& z, Hamiltoni
             double epsilon, callbacks:: logger& logger) {
 z.q += epsilon * hamiltonian.dtau_dp(z);hamiltonian.update_potential_gradient(z, logger);
```

```
void end_update_p(typename Hamiltonian::PointType& z,
                   Hamiltonian& hamiltonian, double epsilon,
                   callbacks:: logger& logger) {
   z.p = epsilon * hamiltonian.dphi_q(z, logger);\}
```
implicit: computationally expensive, first-order implicit Euler integrators run until fixed-point iterations run until convergence

```
class impl leapfrog : public base leapfrog<Hamiltonian> {
public:
  impl leapfroq()
```

```
: base_leapfrog<Hamiltonian>(),
 max_num_fixed_point_(10),
 fixed_point_threshold_(1e-8) {}
```

```
void begin_update_p(typename Hamiltonian::PointType& z,
                    Hamiltonian& hamiltonian, double epsilon,
                    callbacks:: logger& logger) {
  hat phi(z, hamiltonian, epsilon, logger);
  hat_tau(z, hamiltonian, epsilon, this->max_num_fixed_point_, logger);
```

```
void update g(typename Hamiltonian::PointType& z, Hamiltonian& hamiltonia
              double epsilon, callbacks:: logger& logger) {
  // hat\{T\} = dT/dp * d/dqEigen::VectorXd q_init = z.q + 0.5 * epsilon * hamiltonian.dtau_dp(z);
  Eigen::VectorXd delta q(z.g.size());
```

```
for (int n = 0; n < this->max num fixed point ; ++n) {
 delta_q = z.q;z.q.noalias() = q init + 0.5 * epsilon * hamiltonian.dtau dp(z);
 hamiltonian.update_metric(z, logger);
```

```
delta q = z.q;if (delta q.cwiseAbs().maxCoeff() < this->fixed point threshold)
   break;
hamiltonian.update_gradients(z, logger);
```

```
void end update p(typename Hamiltonian::PointType& z,
                 Hamiltonian& hamiltonian, double epsilon,
                 callbacks::logger& logger) {
 hat_tau(z, hamiltonian, epsilon, 1, logger);
 hat_phi(z, hamiltonian, epsilon, logger);
```

```
// hat\{phi\} = dphi/dq * d/dp
void hat phi(typename Hamiltonian:: PointType& z, Hamiltonian& hamiltonian,
            double epsilon, callbacks:: logger& logger) {
  z.p = epsilon * hamilton.dphi_q(z, logger);
```
// hat $\{\text{tau}\}$ = dtau/dq * d/dp

void hat tau(typename Hamiltonian:: PointType& z, Hamiltonian& hamiltonian, double epsilon, int num fixed point, callbacks:: logger& logger) Eigen:: VectorXd p init = $z.p$; Eigen::VectorXd delta_p(z.p.size());

```
for (int n = 0; n < num fixed point; +n) {
  delta p = z.p;
  z.p.noalias() = p_{init} - epsilon * hamiltonian.dtau dq(z, logger);
  delta_p -= z.p;
  if (detta_p<u>.\text{cwiseAbs}().\text{maxCoeff()} < this-&gt;fixed point_\text{threshold})</u>
    break:
```
int max_num_fixed_point() { return this->max_num_fixed_point_; }

```
void set_max_num_fixed_point(int n) {
  if (n > 0)this \rightarrow max_number fixed_point_ = n;
```
double fixed_point_threshold() { return this->fixed_point_threshold_; }

```
void set_fixed_point_threshold(double t) {
  if (t > 0)this->fixed_point_threshold_ = t;
```


Thank You.

