Category: StanPage 2 of 3

Approximate Bayesian Inference

Computing the posterior is our target. Expectation to get the marginal as we might not know the exact data distribution. Even if we do, computation is burdensome in…

Diagnosing approximation algorithm with SBC

SBC Bootstrap approach

motivation: variability . and heavy computation of point-wise-hyperparmeter SBC check approximate the whole procedure using sensitivity to alpha and may work

prophet trend change: sampling and inference

codes are in https://colab.research.google.com/drive/1ssFzcGmUi8xsPWuT3ZrIaA4ZC7Z_k2zE dir(test_prophet) : returns all functions within an module

Stan lp__ function

it’s not exactly log p(theta, x). log [p(f(phi), x) |J_f| ] = log p(theta, x) + log det(J_f). The sampling in Stan is done on the unconstrained parameters,…

stan 강점

example models가 많다 스탠은 assume our users are applied statisticians PyMC3 assumes its users are Python programmers https://discourse.mc-stan.org/t/jonathan-sedar-hierarchical-bayesian-modelling-with-pymc3-and-pystan/3207

BDA Ch.5

Knowing the contents of this chapter which introduce the concept of hierarchical model and its famous application, eight school model, itself is helpful enough! 5.1 Constructing a parameterized…

[wiki] stan

traceplot(estimated_model)하면 바로 traceplot그려짐 단순 vector[n_groups] mu와 orderde[n_groups] mu의 traceplot비교 log_exp_sum random.choices(population, weights, k=#sample) compiled_model <- stan_model(“a.stan”) 항상 setwd(getwd())로 시작하기 for(i in 1:N) { for(k in 1:n_groups) { contributions[k]…

[Stan] PyStan model.py structure

[Stan Ecosystem] 1. Rethinking Package

https://github.com/rmcelreath/rethinking MAP estimation   Hamiltonian Monte Carlo estimation   Posterior prediction   Multilevel model formulas   Nice covariance priors   Non-centered parameterization   Semi-automated Bayesian imputation   Gaussian…