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Summary

The Netherlands, like many countries in this world, face a challenging task
in managing civil infrastructures. The management of vital infrastructures,
like road bridges, is necessary to ensure their safe and reliable functioning.
Various material restrictions, of which limited budgets are the most obvious
example, require that the costs of inspections and maintenance must be
balanced against their benefits.

A principal element of bridge management systems is the estimation of
the uncertain rate of deterioration. This is usually done by using a suit-
able model and by using information gathered on-site. The primary source
of information are visual inspections performed periodically. It is mainly
due to the large number of bridges that these are not continuously moni-
tored, but there are many other reasons why monitoring of all bridges is
not practically feasible. The periodic nature of inspections creates specific
requirements for the deterioration model.

This thesis proposes a statistical and probabilistic framework, which
enables the decision maker to estimate the rate of deterioration and to
quantify his uncertainty about this estimate. The framework consists of a
continuous-time Markov process with a finite number of states to model the
uncertain rate at which the quality of structures reduces over time. The
parameters of the process are estimated using the method of maximum
likelihood and the likelihood function is defined such that the dependence
between the condition at two successive inspections is properly accounted
for.

The results of the model show that it is applicable even if the data are
subject to inspector interpretation error. Based on a data set of general
conditions of bridges in the Netherlands, they are expected to require major
renovation after approximately 45 to 50 years of service. This is roughly
halfway the intended lifetime at design. The results also show significant
uncertainty in the estimates, which is due to the large variability in a
number of factors. These factors include the design of the structures, the
quality of the construction material, the workmanship of the contractor,
the influence of the weather, and the increasing intensity and weight of
traffic.

A condition-based inspection model, specifically tailored to finite-state
Markov processes, is proposed. It allows the decision maker to determine
the time between inspections with the lowest expected average costs per
year. The model, also known as the functional or marginal check-model,
is based on renewal theory and therefore constitutes a life-cycle approach
to the optimization of inspections and maintenance. In addition to this, a
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complete chapter is devoted to determining the most computationally effec-
tive way of performing the necessary calculations in the deterioration and
decision models. This ensures that analyses can be done almost instantly,
even for very large numbers of structures.

The unified framework to deterioration modeling and decision making
presented herein, contributes a quantitative approach to bridge manage-
ment in the Netherlands and to infrastructure management in general. It
can be applied to other fields of similar character like, for example, pave-
ment and sewer system management.
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Samenvatting

Nederland, zoals vele landen in deze wereld, staat voor een uitdagende
taak in het beheer van civiele infrastructuur. Het beheer van belangrĳke
kunstwerken, zoals bruggen in het wegennet, is noodzakelĳk om deze veilig
en betrouwbaar te laten functioneren. Vanwege verschillende materiële
restricties moeten de kosten van inspecties en onderhoud afgewogen worden
tegen de baten. De meest voordehandliggende restrictie is die van een
beperkt budget.

De schatting van de onzekere snelheid van veroudering is het belangrĳk-
ste element in een beheersysteem voor bruggen. Dit wordt gewoonlĳk
gedaan door gebruik te maken van een geschikt model en van gegevens
die op lokatie zĳn verzameld. De voornamelĳkste bron van informatie zĳn
visuele inspecties die de beheerder periodiek laat uitvoeren. Het is vooral
vanwege het grote aantal bruggen dat deze niet continu gemeten worden,
maar er zĳn veel meer redenen waarom dit in de praktĳk niet haalbaar
is. Het feit dat kunstwerken slechts periodiek geïnspecteerd worden, stelt
bĳzondere eisen aan het verouderingsmodel.

Dit proefschrift beschrĳft een statistische en probabilistische aanpak die
het de beheerder mogelĳk maakt om de snelheid van veroudering te schat-
ten en ook om zĳn onzekerheid over deze schatting te kwantificeren. Het
model bestaat uit een continue-tĳd Markov proces met een eindig aan-
tal toestanden om de onzekere snelheid van veroudering van kunstwerken
over tĳd te beschrĳven. De parameters van dit model worden geschat
door gebruik te maken van de methode van de grootste aannemelĳkheid.
De functie voor de aannemelĳkheid is zodanig gedefinieerd dat deze de
afhankelĳkheid tussen twee opeenvolgende inspecties correct meeneemt.

De resultaten van het model tonen aan dat deze goed toepasbaar is,
zelfs als de gegevens onderhavig zĳn aan fouten die zĳn gemaakt door
de inspecteurs. Gebaseerd op een bestand van de algemene conditie van
bruggen, hebben deze naar verwachting op een leeftĳd van ongeveer 45 tot
50 jaar een grondige renovatie nodig. Dit is ruwweg halverwege de beoogde
levensduur bĳ het ontwerp van een brug. De resultaten tonen ook een grote
onzekerheid in de voorspelling, hetgeen komt door de grote variabiliteit in
een aantal factoren. Voorbeelden van zulke factoren zĳn het ontwerp van
de kunstwerken, het vakmanschap van de aannemer, de kwaliteit van het
materiaal, de invloed van het weer, en de toename in intensiteit en gewicht
van het verkeer.

Een toestandsafhankelĳk inspectiemodel, die geschikt is voor Markov
processen met een eindig aantal toestanden, wordt gepresenteerd aan het
einde van dit proefschrift. Het staat de beheerder toe om de tĳd tussen
inspecties te bepalen met de laagst verwachte gemiddelde kosten per jaar.
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Dit model is gebaseerd op vernieuwingstheorie en beschouwd daarom de
hele levenscyclus van het kunstwerk bĳ de optimalisatie van inspecties en
onderhoud. Daarbovenop wordt een volledig hoofdstuk gewĳd aan het
bepalen van de meest efficiënte manier om de noodzakelĳke berekeningen
in het verouderings- en beslismodel uit te voeren. Dit zorgt ervoor dat de
analyses in heel korte tĳd uitgevoerd kunnen worden, zelfs voor een heel
groot aantal kunstwerken.

Het complete concept voor het modelleren van veroudering en het ne-
men van beslissingen voor optimaal onderhoud, zoals deze in dit proefschrift
beschreven worden, voegt een gedegen kwantitatieve aanpak toe aan het
brugbeheer in Nederland en aan het beheer en onderhoud van civiele infra-
structuur in het algemeen. Het kan toegepast worden in andere gebieden
van een vergelĳkbaar karakter, zoals bĳvoorbeeld bĳ het beheer en onder-
houd van asfaltering en riolering.
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1
Introduction

In the year 2007, several bridges have made it into the news. Unfortunately,
the news was not good. On August 1st, the I-35W Mississippi River Bridge
in Minneapolis, Minnesota in the United States of America, collapsed dur-
ing heavy traffic, killing 13 people. The images from the wreckage of the
steel bridge were broadcast worldwide by television and internet. They
showed the devastation resulting from the collapse of such a large struc-
ture.

On August 13th, an almost completed concrete bridge over the Tuo river
near Fenghuang in the people’s republic of China, collapsed killing 22 con-
struction workers. Incidentally, the collapse occurred on the same day the
Chinese government announced a plan to renovate over 6000 bridges which
are known to be structurally unsafe.

In April, people in the Netherlands were confronted with the extremely
rare announcement that a bridge would be closed for heavy traffic due
to concerns about its load carrying capacity. This bridge, the ‘Hollandse
brug’, is part of a highway connecting the cities of Amsterdam and Almere.

Bridges and viaducts play a vital role in today’s transportation infra-
structure and therefore are essential to today’s economy. They are con-
structed and maintained in order to reliably fulfill this role, while also
ensuring the safety of the passing traffic. However, most countries nowa-
days face an aging bridge stock and a strong increase in traffic. This makes
bridge management a challenging problem, especially when budgets for
maintenance are generally shrinking.

Aside from the loss of human life and the emotional impact of cata-
strophic incidents with bridges, the monetary costs can be extremely high
as well. According to an estimate by the transportation industry in the
Netherlands, the cost of the closure of the ‘Hollandse brug’ could run up
to around ¤160 000 per day. The reconstruction of the Mississippi River
Bridge was recently awarded for an amount of $238 million. The total
costs of the bridge collapse, including the reconstruction, rescue efforts,
and clean up, are estimated to be approximately $393 million by the Min-
nesota Department of Transportation.

There are many factors which make bridge management a complex prob-
lem. These include the occurrence of changes in construction methods and
building codes over the years, the varying weight and intensity of traffic, the
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large number of structures over a large area, the influence of the weather on
the structure, and many more. These factors have one thing in common:
they create uncertainty. The problem of bridge management is therefore a
problem of decision-making under uncertainty. The uncertainty primarily
lies in the lifetime of the structures. Over the years, many efforts have been
made to better predict deterioration in bridges of all sorts in order to more
effectively perform the maintenance of bridges.

The research presented in this thesis is aimed at modeling the rate of
deterioration of bridges in the Netherlands. This is done by using informa-
tion on the condition of bridges obtained by inspections performed between
1985 and 2004. A very large number of bridges in the Netherlands were
constructed during the 1960’s and 1970’s. The design life of bridges is gen-
erally around 80 to 100 years. In the Netherlands, by experience, bridges
require a major renovation approximately halfway their operational life.
This means that the country is soon facing a wave of structures which are
in need of renovation.

The remainder of this chapter provides a general introduction to bridge
management and how maintenance modeling is used as part of this. There
are many different types of mathematical models available, which can be
used for the purpose of determining optimal maintenance policies. In Sec-
tion 1.3, an overview is given of the current bridge management practices
in the Netherlands and why one particular modeling approach, namely one
that uses a finite-state Markov process for modeling the uncertain deterio-
ration, is particularly suitable for application in the Netherlands.

1.1 BRIDGE MANAGEMENT

Bridge management is the general term used for the optimal planning of
inspections and maintenance of road bridges. Most management systems
will consider the bridges as a node in a road network in order to reduce
unnecessary traffic obstructions and the number of maintenance actions.
The necessity for bridge management systems (BMS) has grown in recent
years. The construction of new bridges is slowing down and older bridges
are starting to reach a critical age of about 40 years at which major mainte-
nance and renovation work is necessary. Due to budget constraints, bridge
owners are focusing increasingly on maintenance and repair instead of re-
placement.

Maintenance models are developed and used to balance the costs against
the benefits (e.g., increased safety) of current and future maintenance and
repair actions. A bridge maintenance system increases the scope of the
analysis to the planning of maintenance for a network of bridges. Quoting
Scherer and Glagola (1994): ‘A BMS is defined as a rational and systematic
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approach to organizing and carrying out all the activities related to manag-
ing a network of bridges’. The goal of this approach is the following: ‘The
objective of a BMS is to preserve the asset value of the infrastructure by
optimizing costs over the lifespan of the bridges, while ensuring the safety
of users and by offering a sufficient quality of service’, which is quoted from
Woodward et al. (2001).

Individual bridges are complex structures made up of multiple compo-
nents and are constructed using several material types. Their structural
behavior, the quality of the construction materials, and the intensity of traf-
fic loads, are highly uncertain. Many models have been proposed to better
predict the overall deterioration of bridges and to schedule inspections and
maintenance such that costs and safety are optimally balanced.

1.2 MAINTENANCE MODELING

Maintenance, or the act of maintaining something, is defined as ‘ensuring
that physical assets continue to do what their users want them to do’
by Moubray (1997). More formally, maintenance consists of any activity
to restore or retain a functional unit in a specified state such that it is
able to perform its required functions. The general goal of maintenance
optimization may be formulated as ‘the optimal execution of maintenance
activities subject to one or more constraints’. In this definition, there are
three aspects: what is optimal, what maintenance activities are available,
and which constraints must be respected? An obvious constraint is a finite
budget, which means that structures can not simply be replaced at any time
and that maintenance can not be performed continuously. Constraints on
the availability of construction material and qualified personnel may also
create restrictions. There are many examples of maintenance, which may
be small (like cleaning drainage holes) or large (like resurfacing the bridge
deck), but inspections also represent an important activity. Inspections
help gather information for making decisions and their results may influence
future maintenance and therefore also the future condition of structures.
This information is subsequently used in the last aspect to be discussed
here, namely the aspect of optimization. Maintenance and inspections
may be performed such that the costs are minimized, the reliability or
availability maximized, the safety maximized, or that a combination of
these is optimal in some way.

The challenging aspect of maintenance optimization, is that the state of
a structure can not be accurately predicted throughout its lifetime. The
time to reach a deficient condition is uncertain and varies strongly between
different structures. This uncertainty is a result of many factors, including
the quality of the construction material, the quality of the workmanship,
the traffic intensity and the stress which is put onto the structure by heavy
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Figure 1.1: Simple representation of the
two basic elements of a maintenance model:
the deterioration and decision models.

loads. A natural variability exists due to for example differences in temper-
ature, rainfall, wind and the presence of salt (e.g., in a maritime climate or
in areas where frequent use of deicing salt is required). In order to make a
sound decision on which maintenance policy is to be applied, the decision
maker can use a model which represents an abstraction of reality and which
quantifies the uncertainties involved in the degradation process. From this,
it is obvious that such a model should be probabilistic in nature and not
deterministic.

1.2.1 ELEMENTS OF A MAINTENANCE OPTIMIZATION MODEL

Maintenance models may be roughly divided in two parts: a deterioration
model and a decision model. These two elements, as shown in Figure 1.1,
are the basic parts in any maintenance model.

The deterioration model represents the abstraction of the actual degra-
dation and the decision model uses the predicted deterioration to determine
which maintenance policy is optimal. The decision model incorporates the
decision criteria selected by the decision maker and uses information like,
for example, costs of repair and the effectiveness of repair to calculate the
optimal policy. Typical decision criteria are the inspection interval, con-
dition thresholds for preventive repair, and the type of maintenance such
as a complete renewal or a partial repair. Most of the variability and un-
certainty is present in the deterioration model. The decision model may
incorporate some uncertainty in the costs of repair, the effectiveness of life-
time extending maintenance, and in the discount rate, which is used to
determine the value of investments and costs in the future.

The deterioration model may be supplied with data which is available
to the decision maker. This data may include results from inspections in
the form of condition and damage measurements, but it may also consist of
estimates obtained using some form of expert judgment or a combination
of these. As there are typically many structures in a network, the data is
stored in a database to which new data is regularly added.



Section 1.2 ·Maintenance modeling

5

1.2.2 PHYSICAL VERSUS STATISTICAL APPROACH

Modeling the progress of deterioration over time can be done by using a
physical or statistical approach. The physical approach entails the use
of a model which attempts to exactly describe the deterioration process
from a physical point of view. An example of such an approach is the use
of Paris’ law for modeling the growth of cracks in steel plates. Another
example is the use of Fick’s second law of diffusion for modeling the rate of
penetration of chlorides in concrete. This model was fitted by Gaal (2004)
to measurements of the chloride content in concrete samples taken from 81
bridges in the Netherlands.

A different approach to the problem of predicting deterioration based on
historical data, is to assume that the data is generated by a mathematical
model which does not try to emulate reality. Most commonly, this will
be a probabilistic model which is fitted to the historical data by means of
statistical estimation. An example of the statistical approach is the use of
lifetime distributions fitted to lifetimes of bridges. This approach was used
by van Noortwĳk and Klatter (2004), where a Weibull distribution is fitted
to ages of existing and demolished bridges in the Netherlands. The nature
of this approach necessarily means that there is no ‘true’ model, but only
models which fit better to the data compared to others; for example, see
Lindsey (1996).

Other examples of the statistical approach are the application of stochas-
tic processes like the gamma process and finite-state Markov processes. The
gamma process has been used to model various types of degradation like,
for example, thinning of steel walls of pressurized vessels and pipelines in
Kallen and van Noortwĳk (2005a) and the growth of scour holes in the
sea-bed protection of a storm surge barrier in van Noortwĳk et al. (1997).
This process allows for a partial inclusion of physical knowledge by specify-
ing the parameters in the expectation of the process, which is a power law
function. Finite-state Markov processes, like Markov chains, have been
used in the field of civil engineering to model uncertain deterioration in
a number of areas like pavement, bridge, and sewer system management.
One of the first examples is the Arizona pavement management system
(Golabi et al., 1982), which inspired the Pontis bridge management system
(Golabi and Shepard, 1997). More recently, Markov chains have been ap-
plied to sewer system and water pipeline deterioration. For examples, see
Wirahadikusumah et al. (2001) and Micevski et al. (2002). A more com-
plete overview of the application of both gamma processes and finite-state
Markov processes is given by Frangopol et al. (2004). A specific review of
the application of gamma processes in maintenance models is given by van
Noortwĳk (2007).
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1.2.3 LIFE-CYCLE COSTING

During the lifetime of a structure, the condition is influenced by many ex-
ternal factors. The condition is also influenced by design decisions before
construction, and maintenance actions after construction. Because every
decision influences the timing and the nature of future decisions, it is im-
portant to take into account the effect of actions over the full lifetime of
the structure. An important concept in infrastructure management is the
concept of ‘life-cycle costing’. All costs of construction, management and
demolition must be taken into account by the decision maker. Due to the
long design lives of bridges, the costs are usually discounted in time. Dis-
counting is used to take into account the devaluation of money over time.
The costs or rewards of future actions are therefore discounted towards
their present value. Under the assumption that the costs of actions do not
change over time, the result of discounting is that future actions are less
costly. Money which is not spent now, can earn interest until it is needed
for maintenance.

The timing of large scale repairs, like replacements, usually depends on
the state of the structure. For example, in an age-based maintenance policy,
a structure is repaired at fixed age intervals or when a necessity arises,
whichever occurs first. If the structure has reached a predefined failure
condition, it must be repaired or replaced. A common modeling approach
is to use renewal theory which assumes that maintenance actions bring the
structure to an as-good-as-new state. In this case, a repair is therefore
equivalent to a replacement although it is usually not as expensive. The
key idea behind renewal theory is that the timing of successive renewals
is increasingly uncertain and that the probability of a renewal per unit of
time will converge to a kind of average over the long run. As an example,
the probability per year of a renewal using the Weibull lifetime distribution
for concrete bridges in the Netherlands, as determined by van Noortwĳk
and Klatter (2004), is shown in Figure 1.2. Renewal theory supplies the
decision maker with a number of convenient tools for the decision model in
a maintenance model. A good theoretical presentation of renewal theory
is given by Ross (1970).

1.3 BRIDGES AND THEIR INSPECTION IN THE NETHERLANDS

The Dutch Directorate General for Public Works and Water Management
is responsible for the management of the national road infrastructure in
the Netherlands. The Directorate General forms a part of the Ministry of
Transport, Public Works and Water Management and consists of several
specialist services. One of these is the Civil Engineering Division which is
headquartered in Utrecht, the Netherlands. The Civil Engineering Division



Section 1.3 ·Bridges and their inspection in the Netherlands

7

0 100 200 300 400 500

0.
00

0
0.

01
0

0.
02

0

time [yr]

d
en

si
ty

 [
−

]

Figure 1.2: Renewal density using an esti-
mated lifetime distribution for road bridges in
the Netherlands.

‘develops, builds, maintains, advises and co-ordinates infrastructural and
hydraulic engineering structures that are of social importance’.

Since January 1st, 2006, the Directorate General has received the status
of an agency within the ministry. The primary goal of this transformation
is to apply a more businesslike approach to the execution of its tasks. As
part of this new approach, the costs of business are weighed against the
expected benefits. In general, the goal is to increase the accountability by
clearly specifying what work is to be done, how it is to be done, and at what
cost. Also, the satisfaction of the customer (i.e., the government and the
people of the Netherlands) has become an even more important criterion.
The commercial aspect also means that more engineering-like tasks (e.g.,
drawing and cost calculations) are outsourced to the market; that is, to
commercial parties.

The national road network in the Netherlands consists of around 3200
kilometers of road, of which 2200 kilometers are highways. Within this
network, there are approximately 3200 bridges, where the exact construc-
tion year is unknown for a little over 100 of these. Almost all bridges and
viaducts are primarily concrete structures. About one hundred are mainly
steel structures, aquaducts, or moveable bridges. The focus of this re-
search is solely on concrete bridges, because form the largest group within
the population. Also, the other structures can be considered as a fairly
inhomogeneous group. Many of these structures are very unique in their
design and construction.



Chapter 1 · Introduction

8

Figure 1.3: Map of the Netherlands with
the location of bridges which are managed by
the Civil Engineering Division.

A map of the Netherlands with the location of the bridges is shown in
Figure 1.3. A histogram of the construction years for concrete bridges in
the Netherlands is presented in Figure 1.4. As can be observed in this
figure, most bridges are currently between 30 and 40 years old. They
have a life expectancy of about 80 to 100 years when designed. Due to
increasing costs and a decrease in the availability of sufficient budgets for
the construction and replacement of bridges, the focus is shifting more
and more towards the efficient management of structures. The increased
importance of infrastructure management has also resulted in the creation
of a new ‘maintenance and inspection’ group within the Civil Engineering
Division.

In the current inspection regime, large bridges (longer than 200 meters)
are inspected every ten years, and smaller bridges every six years. Variable
maintenance actions, which are defined as maintenance actions outside the
long-term maintenance policy, are performed based on the condition of the
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Figure 1.4: Histogram of construction years
of concrete bridges in the Netherlands.

structures as observed during an inspection and routine maintenance is
performed every year.

There are two types of inspections: functional and technical inspections.
The functional inspections are performed more frequently and are primar-
ily focused on analyzing the extent of individual damages or the state of
materials. These functional inspections are usually performed by the re-
gional office who is responsible for the structure. A technical inspection is a
thorough analysis of the complete structure, aimed at registering the pres-
ence and severity of damages and at assessing the overall condition of the
structure. The information gained from the technical inspections is used
by the Civil Engineering Division for the purpose of managing the struc-
tures in the national road network. For this reason, and due to the fact
that these inspections require specialized knowledge, the Civil Engineering
Division is responsible for the planning and execution of these inspections.

The information gathered in a technical inspection is registered in an elec-
tronic database. The database includes the basic information of all struc-
tures in the Netherlands. This includes details like the location (province,
community, highway, geographical coordinates, etc.), the size (length and
width), if it is part of the highway or if it is located over the highway,
the construction year, and which regional office of the Civil Engineering
Division is responsible for regular inspections and maintenance.
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and their elements in the Dutch bridge inspec-
tion database.

The largest objects in the database are the complexes, which may consist
of one or more structures (e.g., different spans in a long bridge or two paral-
lel bridges). Complexes are divided in two ways: functional or logical. The
functional sectioning separates structures with different limits on traffic
width, height and weight within the complex. This information is primar-
ily used for the planning of special convoys which are particularly large or
heavy. The logical separation is used for inspection purposes and separates
the parts in the complex by the expertise which is required for the inspec-
tions. This means that, for example, all concrete, steel, moveable parts,
and electrical components are considered as separate units for inspections.
Each of these ‘structures’ is further divided in principal parts like for exam-
ple, the superstructure of a bridge, and each principal part consists of one
or more basic elements like, for example, the beams in the superstructure.
A representation of this classification is shown in Figure 1.5.

The primary task of the inspector is to identify the damages and their
location on the structures and to register these in the database. The dam-
ages are linked to the basic elements and their severity is quantified using
the discrete condition scale shown in Table 1.1.

These condition states are the primary information on the extent of dam-
ages. More detailed information like, for example, the size of the damage,
may be added to the database, but is generally not used in the planning
and scheduling of maintenance. The system automatically assigns the high-
est (i.e., the worst) condition number of the basic elements to their parent
primary component and the logical structure also receives the highest con-
dition number of the primary components which it consists of. Because a
minor component with serious damage will automatically lead to the struc-
ture as a whole to have a bad condition, the inspector is supposed to adjust
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Code State Description

0 perfect no damage
1 very good damage initiation
2 good minor damages
3 reasonable multiple damages, possibly serious
4 mediocre advanced damages, possibly grave
5 bad damages threatening safety and or functionality
6 very bad extreme danger

Table 1.1: Seven condition codes as used
for the condition assessment of bridges in the
Netherlands.

these assignments such that the overall condition number is representative
for the structure.

1.4 AIM OF RESEARCH

The condition database as described in the previous inspection is used to
gather information required for the planning and scheduling of mainte-
nance and inspections. However, the historical development of condition
numbers for bridges has not been used in a model for the estimation of the
rate of deterioration. The classic approach for the deterioration model is
to use finite-state Markov chains to model the uncertain rate of transition-
ing through the condition states. As indicated in Dekker (1996), Markov
decision models are quite popular, mainly due to the fact that they are a
natural candidate for condition data on a finite and discrete scale. This is
also the reason why the gamma process is not considered in this research:
it is more natural to apply the gamma process to modeling continuous de-
terioration. There are many publications which describe the use of Markov
chains for deterioration modeling, some of which were mentioned in Sec-
tion 1.2.2. Like ‘Pontis’ in the United States, a number of other countries
have implemented, or at least experimented with, a bridge management
system which is based on Markov chains. Examples in Europe are KUBA-
MS in Switzerland (Roelfstra et al., 2004), and PRISM in Portugal (Golabi
and Pereira, 2003). In the Netherlands, there currently is no such system
and the overall aim of this research is to develop a theoretical model and
analyse its applicability using the Dutch bridge condition data.

A model may not be suitable for many reasons. For example, it may be
too complicated to use, too inefficient to handle large amounts of data, it
may be based on assumptions which are too restrictive, or it may not be
able to deliver the necessary information for decision making. Even if there
is a suitable model available, there may not be sufficient data or it may be
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of too poor quality. Also, some models may be too expensive to implement,
because they require the acquisition of very detailed information. The topic
of this research is therefore also of a quite practical nature.

Finite-state Markov processes are a natural candidate for modeling the
uncertain rate at which transitions through a discrete condition scale occur.
Given this, the research is aimed at addressing the following issues:

a. can historical bridge condition data be extracted from the database in
such a way that it can be used to estimate the parameters of the model?

b. what models have been proposed and applied before and what are their
advantages and shortcomings?

c. what type of Markov process can be used and which procedure is most
suitable for estimation of the model parameters?

d. how robust is the model and the estimation procedure to changes in the
data?

e. how should the model be implemented, such that the calculations can
be done efficiently and with sufficient accurracy?

f. how fast does the overall condition of concrete bridges deteriorate and
how uncertain are the predictions given by the deterioration model?

g. does grouping of bridges based on selected characteristics result in sig-
nificantly different parameters? In other words: is the bridge stock a
heterogeneous population or are there noticable differences in the rate
of deterioration?

h. is it possible and useful to include the variability or imperfection in the
observations by inspectors into the model?

i. is there a suitable decision model for maintenance optimization and
what information is required for the application of such a model?

1.5 READING GUIDE

The following chapter starts with a short overview of various aspects of
finite-state Markov processes, which is suggested reading even for those fa-
miliar with this material as it introduces most of the notation used through-
out this thesis. The rest of Chapter 2 contains an extensive review and
evaluation of estimation procedures for Markov processes proposed in the
past. It concludes with a short discussion on the applicability of the Markov
property and on the use of semi-Markov processes.

Chapter 3 introduces a maximum likelihood estimation approach which
constitutes a significant improvement over the past approaches. It is shown
how perfect and imperfect inspections can be dealt with and how to test
the significance of the influence of various characteristics of a structure on
the outcome of the model. This chapter is mostly theoretical of nature.

The proposed maximum likelihood estimation is applied to the Dutch
bridge condition data in Chapter 4. Various models are tested on data sets
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of the overall bridge condition, superstructures and kerbs. This chapter
presents the most important research results. One of the building blocks of
this model is the transition probability function, which gives the probability
of moving between any two condition states during a specified period of
time. Chapter 7 describes the method of calculating this function, which is
performed ‘under the hood’ and is therefore primarily of interest to those
wishing to implement such a model.

The largest part of this thesis is concerned with the estimation of the de-
terioration process. Chapter 5 expands on this by considering a condition-
based maintenance model which is particularly well suited to be used with
finite-state Markov deterioration processes. Finally, conclusions and rec-
ommendations are given in Chapter 6.

In this thesis, the following notational conventions are used:

− matrices are denoted with boldface capital letters, like P and Q(t),
− (P )ij represents the (i, j) position or element of matrix P ,
− vectors are denoted with boldface letters, like x and θ,
− in matrix notation, all vectors are column vectors and their transpose

is denoted with a prime, like x′,
− indices are denoted with the letters i, j and k,
− random variables are denoted with capital letters, like T ,
− the notations Xt, X(t), Yk and Y (tk) denote stochastic processes of

various forms,
− the letters L and ` are reserved for the likelihood and log-likelihood

respectively,
− the letters s, t and u represent time or age,
− the vector θ represents a set of model parameters, and
− dimensions are given in square brackets, like [yr] for years and [-] for a

value without a dimension.
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2
Markov processes for bridge deterioration

Over the years, finite-state Markov processes have been applied quite fre-
quently in the field of civil engineering. The main part of this chapter is
formed by Section 2.3, which reviews several methods as used in appli-
cations towards civil infrastructure for the estimation of transition prob-
abilities in Markov processes. For a better comprehension of this review,
Section 2.1 first gives a short overview of the essential theory behind finite-
state Markov processes and Section 2.2 describes the nature of bridge in-
spections and the type of data which follows from these inspections.

The chapter ends with some notes on typical issues, which have been
raised over the past, relating to the application of Markov processes. These
are: the validity of the Markov property and the use of semi-Markov
processes to model aging. Here, aging is mathematically defined as an
increasing probability of failure or transition to a lesser condition state as
time progresses.

2.1 FINITE-STATE MARKOV PROCESSES

A finite-state Markov process is a stochastic process which describes the
movement between a finite number of states and for which the Markov
property holds. The Markov property says that, given the current state,
the future state of the process is independent of the past states.

Let {X(t) | t ∈ T } represent the state of the process at time t and let Xk
be the shorthand notation for X(tk), where k = 0, 1, 2, . . . . According to
the definition of a stochastic process, X(t) is a random variable for every t
in the T . The set T is the index set of the process and because t represents
time or age, the elements in this set are non-negative. Also, the process is
assumed to always start at time t0 = 0 and the set {tk, k = 0, 1, 2, . . .} is an
ordered set t0 < t1 < t2 < · · · . Using this notation, the Markov property
formally states that

Pr{Xk+1 = xk+1 |Xk = xk, Xk−1 = xk−1, . . . , X1 = x1, X0 = x0}
= Pr{Xk+1 = xk+1 |Xk = xk},

where the set of possible states is taken to be finite and represented by a
sequence of nonnegative integers: xk ∈ S = {0, 1, 2, . . . , n} for all k.
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The probability of a transition taking place in Markov processes may
depend on a number of time scales. As Commenges (1999) illustrates,
there are three possible time scales: calendar time, age, and the time since
the last transition. Calendar time is mostly of interest to epidemiologists.
A simple example of a process depending on calendar time and age is the
life of humans. It is known that in developed countries, mortality rates
increase with age and decrease with calendar time. This means that as
humans get older, they have a higher probability of dying and, on average,
people get older now compared to those who lived in the middle ages.
The age of a Markov process is defined as the time since the start of the
process at t0. If the transitions in a Markov process are independent of
the age of the process, then the process is said to be stationary or time-
homogeneous. The latter will be used from now on and a formal definition
of time-homogeneity will be given in the following sections.

For civil infrastructures, the age of the process and the duration of stay in
the current condition state are of most interest. A dependence on calendar
time may for example be included to account for an increase (or decrease)
in the quality of building materials or workmanship over the years.

The structure of Markov processes may be defined such that these are
cumulative or progressive, which means that they proceed in one direc-
tion only. An example of a progressive Markov process is the pure-birth
process; see for example Ross (2000). For modeling deterioration, finite-
state Markov processes should posses at least two characteristics, namely:

1. the states represent conditions, therefore they must be strictly ordered,
and

2. the process must progress monotonically through the condition states.

The process may also be sequential, such that the states are traversed one
after the other and no state is skipped. A distinguishment is made between
a discrete-time Markov process and a semi-Markov process. A discrete-
time Markov process performs transitions on a discrete time grid, which is
almost always equidistant. A semi-Markov process allows for transitions
on a continuous time scale.

2.1.1 DISCRETE-TIME MARKOV PROCESSES

Let the index set be defined as T = {0, 1, 2, . . .} and let {Xt, t ∈ T } be
a Markov chain. For a time-homogeneous Markov chain, the probability
of a transition between two states i and j per unit of time is defined by
pij = Pr{Xt+1 = j |Xt = i} = Pr{X1 = j |X0 = i}. The transition proba-
bilities between all possible pairs (i, j), may be collected in the transition
probability matrix
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P =


p00 p01 . . . p0n
p10 p11 . . . p1n
...

...
. . .

...
pn0 pn1 . . . pnn

.
The matrix P is stochastic, which means that 0 ≤ pij ≤ 1 for i, j =
0, 1, 2, . . . , n and

∑n
j=0 pij = 1 for all i. An alternative definition for the

transition probabilities is given by pij = Pr{Pi = j}, where Pi is the ran-
dom variable describing the probability of the destination state if currently
in state i. The transition probability matrix P not only defines the ran-
domness of the process in time, but it also defines the structure of the
model.

As an example of commonly used structures for the purpose of modeling
deterioration, consider the transition probability matrices of a progressive
and a sequential Markov chain:

P =


p00 p01 p02 p03
0 p11 p12 p13
0 0 p22 p23
0 0 0 1

 (2.1)

and

P =


1− p01 p01 0 0

0 1− p12 p12 0
0 0 1− p23 p23
0 0 0 1

. (2.2)

Both examples have four successive condition states and their graphical
representation is given in Figure 2.1. Note that, in these cases, state 4 is
referred to as an ‘absorbing’ state and all other states are ‘transient’.

The Chapman-Kolmogorov equation, defined as

pij(m) =
n∑
k=0
pik(r)pkj(m− r),

can be used to show that the probability pij(m) = Pr{Xt+m = j |Xt = i}
of an m-step transition between any pair of states (i, j) may be calculated
by multiplying the matrix P with itself m times and taking the (i, j)-th
element, like P ij(m) =

(
Pm
)
ij

.

2.1.2 SEMI-MARKOV AND CONTINUOUS-TIME MARKOV PROCESSES

A semi-Markov process is an extension of a discrete-time Markov process
in which a random time is added between transitions. Let J0 be the state
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Figure 2.1: Graphical representation of a
progressive (a) and sequential (b) discrete-
time Markov process.

of the process {X(t), t ≥ 0} at the beginning of the process and Jn, n =
1, 2, . . . the state of X(t) after n transitions. The probability of the process
moving into state j in an amount of time less than or equal to t, given that
it just moved into state i, is defined as

Qij(t) = Pr{Ti ≤ t, Jn+1 = j |Jn = i},

where Ti is the random waiting time in state i. This probability can be
written as the product

Qij(t) = Fij(t)pij , (2.3)

where pij = Pr{Jn+1 = j |Jn = i} is the transition probability function of
the ‘embedded’ Markov chain {Jn, n = 0, 1, 2, . . .} and

Fij(t) = Pr{T ≤ t |Jn+1 = j, Jn = i}

represents the conditional probability of the random waiting time T given
that the process moves into state j after previously having moved into state
i. Equation (2.3) shows that transitions in a semi-Markov process have two
stages: if the process just moved into state i, it first selects the next state
j with probability pij and then waits a random time T according to Fij(t).
The semi-Markov process {X(t), t ≥ 0} may be defined as X(t) = JN(t),
where N(t) is the total number of transitions during the interval (0, t].
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As for the discrete-time Markov process, it is interesting to know the
probability of transitioning between a pair of states during a time interval
of length t ≥ 0. The transition probability function, defined as pij(t) =
Pr{X(t) = j |X(0) = i} for time-homogeneous processes can be calculated
by

pij(t) =


1−
∑
k

∫ t
x=0

[1− pkj(t− x)]dQjk(x), i = j∑
k

∫ t
x=0
pkj(t− x)dQik(x), i 6= j.

(2.4)

Obviously, pij(0) = 0 for i 6= j and pii(0) = 1. This function is also referred
to as the ‘interval transition probability’ by Howard (1971).

The name ‘semi-Markov’ stems from the fact that the process X(t) is (in
general) not Markovian for all t, because the distribution of the waiting time
may not be a memoryless distribution. The Markovian property always
holds at the times of the transitions. A special type of semi-Markov process
arises when the waiting time is taken to be exponential; that is, when Ti
has a cumulative distribution function given by

Fi(t) = 1− exp{−λit} (2.5)

with intensity λi > 0, and pii = 0 for all i ∈ S. This implies that the process
always moves to a different state and the waiting time is independent of
which state it moves to. This type of semi-Markov process is referred to as
a continuous-time Markov process, because it is Markovian for all t ≥ 0.
For continuous-time Markov processes, the transition probability function
Equation (2.4) simplifies to

P (t) = exp{Qt} =
∞∑
k=0
Qk
tk

k!
, (2.6)

where Q is the transition intensity matrix with elements

qij =
{
−λi, if i = j,
λipij , if i 6= j. (2.7)

Note that
∑n
j qij = 0 for all i ∈ S. The function exp{A}, where A is a

square matrix, is known as the ‘matrix exponential’. An example equivalent
to Figure 2.1 for continuous-time Markov processes is given in Figure 2.2.

2.1.3 FIRST PASSAGE TIMES AND PHASE-TYPE DISTRIBUTIONS

In maintenance and reliability modeling, one is often interested to know the
time required to reach a particular state. For instance, if state j is defined
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Figure 2.2: Graphical representation of a
progressive (a) and sequential (b) continuous-
time Markov process.

as a failed state and the process is currently in state i, the probability
density of the first time of passage into state j for a discrete-time Markov
process is defined as:

fij(t) = Pr{Xt = j,Xt−1 6= j, . . . , X1 6= j |X0 = i},

with t = 0, 1, 2, . . . and i 6= j. This probability density function can be
calculated using the recursive equation

fij(t) =
{∑

k 6=j pikfkj(t− 1), t > 1,
pij , t = 1.

For semi-Markov processes, the equivalent definition is

fij(n, t) = Pr{X(t) = j,X(s) 6= j for ∀s ∈ (0, t) and N(t) = n |X(0) = i}

for n = 0, 1, . . . , and t ≥ 0, which is a joint probability of the first passage
time and the number of transitions required to first reach state j from i.
This density can also be calculated recursively using the relation

fij(n, t) =


∑
k 6=j
∫ t
s=0 fkj(n− 1, t− s) dQik(s), n > 0 and t > 0,

dQij(t), n = 1 and t > 0,
0, n = 0 or t = 0,

where Qij(t) is given by Equation (2.3); see Howard (1971, p.733).
The time to reach an absorbing state in a finite-state Markov process has

a so-called ‘phase-type’ probability distribution, because the process must
pass through a finite number of phases before being halted by the absorbing
state. Assume that the state set has n+ 1 states, that is S = {0, 1, . . . , n},
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and that the absorbing state is the last state in the process, then the
transition intensity matrix Q may be divided as

Q =
[
R r
0′ 0

]
,

where the n × n matrix R represents the transitions among the transient
states, r is a column vector of length n with the intensities for transitions
from the transient states into the absorbing state, and 0′ is the transpose
of the column vector with all zeros. If the absorbing state is defined as
being the failed state, the process is ‘in service’ or operative if it is in one
of the transient states and so the probability of being in service in a time
less than or equal to t is

Pr{X(t) < n} = p′0 exp{Rt}1.

Here, the row vector p′0 contains the probabilities of starting in one of the
transient states and 1 is a column vector with all ones. The process is
often assumed to start in state 0 with probability one, such that p0 =
{1, 0, . . . , 0}. The probability distribution of the time to failure is now
simply given by

F (t) = 1− p′0 exp{Rt}1 (2.8)

with the probability density function f(t) = p′0 exp{Rt}(−R ·1). It should
be clear that the above matrix analytic formulation can be used to de-
termine the failure distribution for Markov processes with any arbitrary
structure. Continuous-time Markov processes with a sequential structure
like the example in Figure 2.2(b) have the following analytical solutions for
the probability distribution of the time to failure:

− the Erlang distribution with probability density function

f(t) = λ (λt)n−1

(n− 1)!
exp{−λt}, (2.9)

if for all transient states λi = λ, and
− the hypoexponential distribution with probability density function

f(t) =
n−1∑
i=0

[∏
j 6=i

λj
λj − λi

]
λi exp{−λit}, (2.10)

with λi 6= λj for i 6= j.

To summarize: if all waiting times have identical and independent expo-
nential distributions, the time to absorption has an Erlang distribution
(which is a special case of the gamma distribution) and if the waiting times
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are exponential with strictly different intensity parameters, the time to ab-
sorption has a hypoexponential distribution. Both distributions may also
be represented by Equation (2.8) with the appropriate intensity matrix R.

First passage times have been used by Kallen and van Noortwĳk (2005b)
using a mixture of two Weibull probability distributions in a semi-Markov
process fitted to bridge inspection data from the Netherlands. Phase-type
distributions were formalized by Neuts (1981) using an algorithmic, or a
matrix-analytic, approach. Their use is very common in queuing theory
and they have also been used for modeling failure times, see e.g. Faddy
(1995). Different names have been used for the distribution given in by
Equation (2.10), like ‘general gamma’ or ‘general Erlang’ (Johnson et al.,
1994), but ‘hypoexponential’ is most commonly used; for an example, see
Ross (2000, p.253).

2.2 CHARACTERISTICS OF BRIDGE INSPECTION DATA

There are many ways to inspect a bridge. The quality and detail of infor-
mation gathered during an inspection depends on the type of inspection
which is applied. Inspections may be quantitative or qualitative. Quantita-
tive inspections attempt to measure the physical properties of deterioration
on structures. Examples are the measurement of chloride content in con-
crete and the sizing of cracks in steel. Qualitative inspection methods are
generally subjective interpretations of the level of deterioration obtained
by visual inspections. Most often, these type of inspection methods will
result in the classification of the condition in a finite number of states.

Inspections are assumed to be periodic by definition and continuous mea-
surements or observations of the condition of bridges are referred to as mon-
itoring. Bridge ‘health monitoring’ is a rapidly growing field in the area of
bridge management. Monitoring can, amongst others, be used to measure
vibrations generated by traffic or measure contraction and expansion due
to temperature changes.

This chapter deals solely with categorical inspection data from periodic
observations, because quantitative inspections are not well suited for ap-
plication on a large scale. Take for example the measurement of chloride
content in concrete, which requires the drilling of core samples for analysis
in a laboratory. The drilling of cilindrical test samples from bridges is time
consuming and too costly to perform throughout the whole bridge network
on a regular basis. Also, due to spatial variability, the results obtained from
these samples are likely not to be representative for the whole structure.

The level of detail in data obtained from periodic observations can differ
as well. Data may be kept for individual structures or may be pooled for a
group of structures. Pooled data is usually referred to as ‘aggregated data’.
With this type of data, the number (or the proportion of the total number)
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Code State Description

9 excellent
8 very good no problems noted.
7 good some minor problems.
6 satisfactory structural elements show some minor deterioration.
5 fair all primary structural elements are sound; may

have minor section loss, cracking, spalling or scour.
4 poor advanced section loss, deterioration, spalling or

scour.
3 serious loss of section, deterioration, spalling or scour have

seriously affected primary structural components.
Local failures are possible. Fatigue cracks in steel
or shear cracks in concrete may be present.

2 critical advanced deterioration of primary structural ele-
ments. Fatigue cracks in steel or shear cracks in
concrete may be present or scour may have re-
moved substructure support.

1 imminent failure major deterioration or section loss present in crit-
ical structural components or obvious vertical or
horizontal movement affecting structure stability.

0 failed beyond corrective action, out of service.

Table 2.1: Ten bridge condition codes as
defined in FHWA (1995, p.38).

of structures in each condition state is known at successive points in time,
but the transitions of individual structures are not known. If the condition
history is known for each structure, the resulting data is known as ‘panel
data’. Finally, ‘count data’ is a special type of panel data where only the
number of traversed states during an inspection interval is registered. In
this case, the initial state and the target state are either not known, or not
used by the decision maker.

Almost all discrete condition scales used in visual inspections represent
the general or overall condition of a structure or one of its components.
Therefore, different physical damage processes may lead to the same con-
dition scale. This is something to keep in mind when modeling the condi-
tion of structures using a discrete and finite scale like those presented in
Table 1.1 on page 11 and in Table 2.1. These rating schemes are typical for
bridge management applications. A decreasing (or increasing) condition
number is used to represent the decrease in the condition (or the increase
in deterioration) of structures. The condition states and their identifica-
tion are subject to personal interpretation and the scale is not necessarily
equidistant, which means that the difference between ‘excellent’ and ‘very
good’ is not necessarily the same as the distance between ‘poor’ and ‘seri-
ous’. The following quote from FHWA (1995, page 37) illustrates quite well
how these codes should be interpreted and used:
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“Condition codes are properly used when they provide an overall
characterization of the general condition of the entire component be-
ing rated. Conversely, they are improperly used if they attempt to
describe localized or nominally occurring instances of deterioration
or disrepair. Correct assignment of a condition code must, therefore,
consider both the severity of the deterioration or disrepair and the
extent to which it is widespread throughout the component being
rated.”

The fact that discrete condition scales have no physical dimension has
significant consequences for their application in maintenance optimization.
Without information on the type of damage and the sizing of the damage,
it is practically impossible to put a cost on repairs, replacements, or even
on failures.

Inspections are generally assumed to be performed uniformly over time
and over a group of structures, which means that some structures are not
inspected more (or less) than others due to their state (or any other phys-
ical characteristic) or due to their age. This assumption is violated when
certain structures, which are known to deteriorate faster than others, are
inspected more often than others. In this case, the process of performing
inspections depends on the rate of deterioration and is therefore not ran-
dom. Another common situation in which this assumption may be violated
is when structures are inspected immediately after a maintenance action
in order to determine their ‘new’ condition. This introduces another is-
sue which is of great influence in bridge inspections: maintenance. At the
least, the rate of deterioration is slowed down by performing maintenance
on structures and in most cases it will also result in an improved condition
state.

The goal of performing regular periodic inspections is not only to ensure
the safe operation of structures, but also to gain insight in the rate at which
structures deteriorate. This insight may be used for optimizing the plan-
ning and scheduling of maintenance actions or the timing of subsequent
inspections. As maintenance influences the rate of deterioration, it is im-
perative that this information is known to the modeler during estimation
of the model parameters. Otherwise the results will not be representa-
tive of the real life situation. In fact, the estimated rate of deterioration
will underestimate the actual rate when maintenance actions are ignored
intentionally or unintentionally.

Another important issue involved with the estimation of deterioration
rates of structures is censoring. Censoring arises when objects are not ob-
served over their full lifetime. For structures, the process of deterioration
is censored because bridge conditions are not continuously monitored and
because inspection regimes are not the same over the full lifetime of the
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structures. For example, the database used for registration of bridge in-
spection results in the Netherlands, has been in use since December 1985.
Although structures were inspected before this time and the results were
somehow registered, this information is not used in the decision making
process because it is considered too old and it was obtained with a differ-
ent inspection regime. So, in the case of the database in the Netherlands,
the condition of structures built before 1985 is censored. The same holds
for the end of the lifetime of structures. When the data set is used for
analysis, most structures will not have reached the end of their service life.
Besides this form of left- and right-censoring, there is also a kind of interval
censoring in bridge inspection data. Periodic inspections of Markov dete-
rioration processes reveal only current status data, which means that the
decision maker knows only that one or more transitions have taken place
between two inspections, but he does not know the times at which they
occurred.

Finally, bridge condition data will never contain a set of observations
uniformly distributed over all condition states. Even if inspections are as-
sumed to be independent of state and age, civil infrastructures like bridges
have long design lives and physical failures rarely occur. This means that in
most data sets, there are many more observations of the better conditions
relative to observations of poorer conditions.

2.3 REVIEW OF STATISTICAL MODELS AND ESTIMATION METHODS

The use of Markov processes with a finite number of states has become quite
common in civil engineering applications. In order to fit the deterioration
process to the available data, several statistical models and corresponding
estimation methods have been proposed to determine the optimal values
of the model parameters. The parameters in a Markov process are the
transition probabilities or intensities, depending on whether a discrete- or
continuous-time process is used. This review is divided in three parts with
the division being based on the method of estimation: estimation methods
other than maximum likelihood, maximum likelihood estimation, and less
common methods like those using Bayesian statistics are also mentioned.

Classic statistical models are linear and generalized linear models or non-
linear models, which relate a response (or dependent) variable to one or
more explanatory (or independent) variables using a linear or nonlinear
function in the parameters. Generalized linear models form a broader class
than the class of linear models. Besides linear models as a sub-class, gener-
alized linear models include the binary probit (logit), ordered probit (logit),
and Poisson models amongst others. This area of statistical analysis is com-
monly know as regression analysis.
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2.3.1 METHODS OTHER THAN MAXIMUM LIKELIHOOD

This section deals with estimation methods which do not use the method of
maximum likelihood. Traditionally, this form of regression uses the method
of least squares or the method of ‘least absolute deviation’ to minimize
the discrepancy between the model and the observations. A perfect fit is
generally not possible due to the limitations of a simplifying model, nor
is it desirable, as the model should be an abstraction of reality with the
purpose of making some inference about the behaviour of the phenomenon
being analyzed.

Two approaches are distinguished in this section: 1) minimizing the dis-
tance between the expectation of the condition state and the observations,
and 2) minimizing the distance between the probability distribution of the
condition states and their observed frequencies. In the first approach, the
observations are the states of structures of various ages. The second ap-
proach uses the count (or the proportion) of structures in each state at
various ages.

Regression using the state expectation

Fitting a Markov chain deterioration model by minimizing the distance be-
tween the observed states and the expectation of the model, is by far the
most common approach found in the literature on infrastructure manage-
ment. Assume that the condition of structures is modeled by the Markov
chain {X(t), t = 0, 1, 2, . . .} and let xk(t) denote the k-th observation of
a state at age t. In other words, the population of bridges is assumed
to be homogeneous and for each t in a finite set of ages, there are one
or more observations of the condition state. As the name suggests, the
method of least squares minimizes the sum of squared differences between
the observed state at age t and the expected state at the same age. This
is formulated as follows:

min
pij

∑
t

∑
k

{
xk(t)− EX(t)

}2
, (2.11)

under the constraints 0 ≤ pij ≤ 1 and
∑
j pij = 1. The expectation of the

Markov chain at time t is given by

EX(t) =
∑
j

jpj(t),

where pj(t) = Pr{X(t) = j} is the state distribution at time t and is defined
as

pj(t) =
∑
i

Pr{X(t) = j |X(t− 1) = i}Pr{X(t− 1) = i}. (2.12)
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The model in Equation (2.11) deceptively looks like a linear model. How-
ever, it is a nonlinear model as the expectation of X(t) is nonlinear as a
function of the parameters, which are the transition probabilities.

The earliest references of the application of the least squares method in
infrastructure management can be found in the area of pavement manage-
ment. An overview of the early development is given by Carnahan et al.
(1987) and Morcous (2006) also refers to Butt et al. (1987) as an example
of the application in pavement management. Carnahan et al. (1987) and
Morcous (2006) also discuss the use of the least absolute deviation regres-
sion, which minimizes the sum of the absolute value of the differences. A
more recent application to pavement management is given by Abaza et al.
(2004) and the regression onto the state expectation is also applied to sewer
system management by Wirahadikusumah et al. (2001).

In Cesare et al. (1994), least squares minimization is applied to a slightly
different model compared to the one presented in Equation (2.11). This
approach consists of minimizing the weighted sum of squared differences
between the observed proportion of states and the state distribution given
by the process X(t), which is given by

min
pij

∑
t

n(t)
∑
k

{
yk(t)− pk(t)

}2
, (2.13)

where n(t) is the number of observed states at time t, yk is the observed
proportion of structures in state k, and pk(t) = Pr{X(t) = k} is the prob-
ability of the process X(t) being in state k at time t. The weights n(t) are
used to assign more weight to those proportions which have been deter-
mined with more observations.

Probably the most significant objection against using these approaches
is the fact that so much detail in the data is disregarded. The expectation
of the Markov chain aggregates the historical development of the individ-
ual structures. Also, if only the expected condition at time t is available,
the decision maker can not deduce the state distribution either. So even
if successive observations of a single structure are available, the observa-
tions are treated as being independent and this is in contradiction with the
assumption of the underlying Markovian structure. Another very strong
objection against the formulation of the model in Equation (2.11), is the
fact that the expectation of X(t) depends on the definition of the condition
scale. From this perspective, the model formulated in Equation (2.13) is
much more appropriate.

Regression using the state distribution

The Pontis bridge management system uses the observed proportions of
states for individual components. There are five sequential states, such
that each component in a structure is assigned a vector y = {y1, . . . , y5}
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after an inspection. This vector reflects that a proportion y1 of the object
in state 1, a proportion y2 in state 2, etc. Obviously, it must hold that∑5
k=1 yk = 1. Assume that the condition of the component is modeled

by a Markov chain {X(t), t = 0, 1, 2, . . .} and that at least two successive
observations of the proportions, denoted by y(t−1) and y(t), are available.
The probability of the proportions at time t is given by Equation (2.12) and
because the observed proportions will generally not satisfy this relationship,
an error term can be used to allow for the difference:

yk(t) =
5∑
i=1
yi(t− 1)pik + e(t), (2.14)

for k = 1, . . . , 5. In Lee et al. (1970, Chapter 3) it is shown how this rela-
tionship can be used to obtain the classic estimator p̂ = (X ′X)−1X ′Y with
appropriately defined matrices X and Y . This relatively easy relationship
for the estimator is obtained by least squares optimization. Unfortunately,
this approach does not explicitly take into account the constraints for the
transition probabilities. The row sum constraint holds, but 0 ≤ pij may
be violated. An adjustment to the model is therefore required. Alterna-
tively, the method of maximum likelihood could be used by choosing an
appropriate probability distribution for the error term e(t). Intuitively, the
model in Equation (2.14) is quite appealing as it neatly incorporates the
progressive nature of the Markov process. It does so by directly relating an
observed condition state to the condition state at the previous inspection,
using the transition probability.

The description of the multiple linear regression approach in AASHTO
(2005) does not describe how the problem with the non-negativity con-
straint is accounted for. Another important constraint for the application
of this approach is that there should be more observations than there are
states. The Pontis system assumes that the states are sequential such that
it is only possible to transition one state at a time. As the last state, the
fifth state, is absorbing, there are just four transition probabilities to be
estimated. The quality of the description of the methodology in AASHTO
(2005) is quite poor and the methodology itself is faulty. The way the Pon-
tis system attempts to combine transition probability matrices estimated
from pairs of observations with different time intervals separating them,
is a good example of this. First, the observation pairs are grouped in ten
bins, where the first bin contains all pairs with 6 to 18 months separating
them, the second bin contains all pairs that are observed 19 to 30 months
apart from eachother, etc. Second, the transition probability is calculated
for each bin. The one year transition probability pij ≡ pij(1) is calculated
using the transitions in the 6 to 18 month bin, the two year transition
probability pij(2) is calculated using the 19 to 30 month bin, and so on
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up to the tenth bin. Third, the estimated transition probabilities for each
bin are converted to a one year transition probability by the faulty rela-
tionship pij = n

√
pij(n) for i = j, pij = 1 − n

√
pij(n) for i = j + 1, and

pij = 0 otherwise. Fourth, all converted transition probabilities are com-
bined into the final estimated transition probability matrix by taking a
weighted average of the ten transition probability matrices. The third and
fourth steps are incorrect. A counter example for the third step is easily
given. A move from state 1 to state 2 during two time periods can be
achieved in two ways. The probability of this transition is therefore deter-
mined by p12(2) = p11p12 + p12p22. It is obvious that the square root of
this probability is not equal to p12.

2.3.2 MAXIMUM LIKELIHOOD METHODS

In most situations, the method of estimating model parameters by maxi-
mizing the likelihood of the observations, is a possible approach. This is the
case is if, for example, the error term in the model is assigned a probability
distribution, or if the parameters are probabilities themselves. A more de-
tailed introduction to the concept of maximum likelihood estimation will
be given in Chapter 3.

Poisson regression for continuous-time Markov processes

If an object has performed one or more transitions during the time between
two periodic inspections, only the number of transitions and not the times
of these transitions are known. In order to use count data to estimate tran-
sition probabilities, it is often assumed that the transitions are generated
according to a Poisson process. A Poisson process is a stochastic process
which models the random occurrence of events during a period of time. If
the time between the occurrence of each event is exponentially distributed
with parameter λ > 0, then the probability of n events occurring during
a period with length t ≥ 0 has a Poisson distribution. The probability
density function of the Poisson distribution is given by

Pr{N(t) = n} = (λt)n

n!
e−λt, (2.15)

with mean λt such that the expected number of events per unit time is
E[N(1)] = λ. If there are m = 1, 2, . . . independent observations (t1, n1),
(t2, n2), . . ., (tk, nm), the likelihood of these observations is given by

Pr{N(t1) = n1, . . . , N(tm) = nm} =
m∏
k=1

(λtk)nk
nk!

e−λtk . (2.16)

The maximum likelihood estimator for λ is
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λ̂ =
∑m
k=1 nk∑m
k=1 tk

. (2.17)

The term ‘Poisson regression’ stems from the fact that the parameter λ
is often assumed to depend on one or more covariates in a multiplicative
model: λ = exp{β′x}, where x is a vector of covariates and β the vector
of coefficients to be estimated. Poisson regression is therefore a generalized
linear regression method with the logarithm as the link function; that is,
log(λ) = β′x, which is also known as a log-linear regression model.

For the application to bridge inspection data, the use of Poisson regres-
sion is restrictive in the sense that it requires substantial simplifications of
the real life situation. The Poisson process counts the number of events and
does not account for different types of events. The simplifying assumption
is therefore that each event is the same, namely a transition to the next
state after an exponential waiting time. The model is therefore necessarily
sequential (because it is not possible to distinguish between different tar-
get states) and the waiting time in each state is the same. Another often
mentioned limitation of the Poisson process is the fact that the variance
of N(t) is equal to its mean (and therefore increases when the mean in-
creases), whereas the data may be more dispersed such that the variance
should be greater than the mean.

Also, the simple likelihood given by Equation (2.16) and the estima-
tor in Equation (2.17), which follows from it, do not account for the fact
that the number of transitions is finite in the sequential model. Let Sn =
T1 + T2 + · · ·+ Tn represent the random time required to perform n tran-
sitions. Knowing that the equivalence relationship Sn ≤ t ⇐⇒ N(t) ≥ n
holds, it is possible to write Pr{N(t) = n} = Pr{Sn ≤ t, Sn+1 > t}. In
words: the probability of exactly n transitions during time interval (0, t] is
equal to the joint probability that the n-th transition occurs before time
t and the next transition occurs after time t. It is now quite easy to
show that this approach does not work in the case of a finite process, like
the Markov process considered here. Let the set of states be given by
S = {0, 1, 2, 3, 4, 5} and i, j ∈ S, then a transition from any i ∈ S to j = 5
during a period t requires special attention. Because there is no such thing
as a ‘next’ transition in this case, the probability of the number of events
during a period of length t is actually

Pr{N(t) = n} =
{

Pr{Sn ≤ t, Sn+1 > t}, if j 6= 5,
Pr{Sn ≤ t}, if j = 5, (2.18)

where we again let n = j − i. Therefore, the probability of observing n
transitions, in which the last transition was into the absorbing state 5, is
given by
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Pr{Sn ≤ t} = Pr{N(t) ≥ n} =
∞∑
k=n

(λt)k

k!
e−λt = 1−

n−1∑
k=0

(λt)k

k!
e−λt.

This is the cumulative distribution function of the Erlang distribution for
which the density function was given in Equation (2.9).

Given the result in Equation (2.18), we can reformulate the likelihood of
all m observations in Equation (2.16) as

Pr{N(t1) = n1, . . . , N(tm) = nm} =
{ ∏
∀{k:jk 6=5}

(λtk)nk
(nk)!

e−λtk
}

×
{ ∏
∀{k:jk=5}

∞∑
l=nk

(λtk)l

l!
e−λtk

}
. (2.19)

The estimate λ̂ must now be obtained by numerical methods.
The fact that the correct likelihood of the periodic observations is given

by Equation (2.19) and not by Equation (2.16) gives an indication of
the appropriateness of the nonparametric maximum likelihood estimator
(NPMLE) suggested by Wellner and Zhang (2000) for periodically observed
counting processes which are inhomogeneous. In these processes, the tran-
sition intensity depends on the age t of the processX(t), such that λ ≡ λ(t).
The integrated intensity

Λ(t) =
∫ t
s=0
λ(s)ds (2.20)

is also the mean function of the counting process defined by λ(t): Λ(t) =
E[N(t)]. If a process is observed at successive times 0 < t1 < t2 < . . . < tm
and each observation gives us the number of transitions since the last ob-
servation, denoted by n1, n2, . . . , nm, then the probability of these obser-
vations is given by

Pr{N(t1) = n1, N(t2) = n2, . . . , N(tm) = nm} =
m∏
k=1

(Λ(tk)− Λ(tk−1))nk−nk−1

(nk − nk−1)!
exp {−(Λ(tk)− Λ(tk−1))} ,

where t0 = 0 and n0 = 0. Again, this likelihood does not account for
the finite number of transitions in a finite-state Markov process, therefore
this model is not ideal for the purpose of estimating transition intensities in
bridge deterioration models using finite-state Markov processes. It is noted
that the NPMLE is a more general model which has the Poisson regression
model as a special case.
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Madanat and Wan Ibrahim (1995) used the likelihood in Equation (2.16)
while acknowledging the fact that N(t) is actually finite for the model un-
der consideration. They mention the possibility of truncating the Poisson
distribution as a possible correction, but assert that observations of the last
state are very rare such that they do not influence the resulting estimator
significantly. To account for possible overdispersion, the authors suggest
the use of the negative binomial distribution instead of the Poisson distri-
bution for the count of transitions. Compared to the Poisson distribution,
which it has as a special case, the negative binomial distribution includes
an extra parameter which allows the variance to be adjusted independently
of the mean. This is a common approach to account for overdispersion, see
Cameron and Travedi (1998, Chapter 4) for an example. In a Bayesian
framework, the negative binomial distribution is derived by assuming that
the intensity λ is gamma distributed.

Multinomial model for Markov chains

Assume that all structures are continuously monitored. For Markov chains
this implies that each transition for every structure is observed. Let all
observations be pooled by age t ≥ 0 and let the setN i(t) = {Ni1(t), Ni2(t),
. . . , Nin(t)} represent the random count of transitions to state j = 1, . . . , n
from state i for all structures at age t. Because the deterioration process is
continuously monitored, these counts are observed and are multinomially
distributed for each state i. The probability of the observations ni(t) at
age t is given by the multinomial distribution with density function

f(ni(t)) = Pr{Ni1(t) = ni1(t), . . . , Nin(t) = nin(t)} =

ni(t− 1)!∏n
j=1 nij(t)!

n∏
j=1
p
nij(t)
ij ,

with ni(t− 1) =
∑n
j=1 nij(t) the total number of transitions out of state i

and pij the transition probability from state i to state j. The likelihood of
all observations is now simply given by

L(p;n) =
∏
t=1

n∏
i=1
f(ni(t)).

The maximum likelihood estimator for the transition probabilities is

p̂ij = nij∑n
j=1 nij

,

where nij is the total number of observed transitions between states i and
j over all ages of the structures.
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This result was derived by Anderson and Goodman (1957) and Billingsley
(1961). See also Lee et al. (1970) who refer to this type of data as ‘micro
data’. In the context of estimating bridge deterioration, Morcous (2006)
referred to this method as the ‘percentage prediction method’. The model
as it is defined here, can not be used for bridge management, because it
assumes that the deterioration process is continuously monitored. Since
this is not the case, the exact count of transitions between condition states
are not available. Application to the Dutch bridge condition data would
require a substantial adjustment of this model in order to account for the
censoring involved.

Probit and logit models for Markov chains

The binary probit and ordered probit models are linear regression models in
which a continuous latent (unobservable) variable is observed to be in two
(binary) or more (ordered) discrete categories. These models are appealing
for the application in maintenance modeling, as the condition states are
often assumed to be related to some underlying deterioration process which
can not be measured directly.

Let the unobservable amount of deterioration be given by the random
variable Y , then the probit model regresses this variable onto a linear model
with standard normal errors ε:

Y = β′x+ ε, with ε ∼ N (0, 1), (2.21)

where x is the vector of the explanatory variables (also referred to indepen-
dent or exogeneous variables) with error ε. The row vector β contains the
coefficients to be estimated and the first parameter, which is β0, is usually
taken as the intercept by setting x0 = 1. Now let Z be a discrete random
variable which represents the actual observed states, then the outcome for
the binary probit model follows from

Z =
{

0 if Y ≤ τ ,
1 if Y > τ ,

and for the ordered probit model with n+ 1 states it follows from

Z =


0 if Y ≤ τ1,
1 if τ1 < Y ≤ τ2,
...
n− 1 if τn−1 < Y ≤ τn,
n if τn < Y .

Because Y ∈ (−∞,∞) for all k = 1, 2, . . . , the thresholds τ and τi, i =
1, 2, . . . for the state conditions must be located between −∞ and∞. Note



Chapter 2 ·Markov processes for bridge deterioration

34

that the thresholds do not have to be equidistant. From these relationships,
the probability of each observation can be determined. For the binary
probit model this is simply Pr{Z = 1 |x} = Pr{Y > τ |x}, where Pr{Y >
τ} = Pr{β′x + ε > τ} = Pr{ε > τ − β′x} = 1 − Φ(τ − β′x). Here Φ(x)
is the cumulative standard normal distribution function. The notation
Pr{Z = 1 |x} = Φ(β′x − τ) is also often used, which is equivalent as
the normal distribution is symmetric with Φ(−x) = 1 − Φ(x). Obviously
Pr{Z = 0 |x} = 1−Pr{Z = 1 |x}. Similarly, for the ordered probit model,
the probabilities of observing each condition state is given by

Pr{Z = 0 |x} = Φ(τ1 − β′x)

Pr{Z = 1 |x} = Φ(τ2 − β′x)− Φ(τ1 − β′x)
... (2.22)

Pr{Z = n− 1 |x} = Φ(τn − β′x)− Φ(τn−1 − β′x)

Pr{Z = n |x} = 1− Φ(τn − β′x)

Under the assumption that the observations are independent, the likelihood
function for the coefficients β and the thresholds τ , given the observations
z and the explanatory variables xk is simply

L(β, τ |z) =
∏
k

Pr{Z = zk |xk},

which can be maximized to estimate the unknown coefficients and thresh-
olds. Before doing so, the model must be ‘identified’ by setting either the
intercept β0 or one of the thresholds τi equal to zero or some other constant.
Fixing either the intercept or one of the thresholds will influence the other,
but not the probability of the outcome zk; see Long (1997, pp.122–123).

The logit model takes the same approach as the probit model, but as-
sumes that the errors have a standard logistic distribution. The cumulative
distribution function of the logistic distribution is

F (x) = 1
1 + e−(x−µ)/s , (2.23)

for x ∈ (−∞,∞) and with mean µ and variance σ2 = (πs)2/3. The stan-
dard logistic distribution is symmetric and has µ = 0 and s = 1, such that
the variance is π2/3. This is slightly more than the variance of the stan-
dard normal distribution. Because it is symmetric, it is possible to derive
the same probability of the outcomes as in Equation (2.22) with F (x) from
Equation (2.23) instead of the cumulative standard normal distribution
Φ(x).
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The ordered probit model is generally not used to estimate transition
probabilities in a Markov process, but Madanat et al. (1995) made some
assumptions in order to apply this method to a Markov chain for modeling
bridge deterioration. The first assumption is that the Markov chain is pro-
gressive with a transition probability matrix like in Equation (2.1). Then,
the observations zk are assumed to be the number of transitions between
two consecutive inspections: zk = j − i. A different Z is defined for each
row except for the last in the transition probability matrix, thus allowing
for different deterioration mechanisms in each (transient) state. Therefore,
Pr{Zi = z} = Pr{X(1) = i + z |X(0) = i} for i = 0, 1, . . . , n − 1 and the
authors introduce additional notation to allow the transition probabilities
to be estimated for each individual bridge. Also, Madanat et al. (1995)
use a log-linear model instead of the linear model in Equation (2.21) to
ensure that the unobserved condition is non-negative: log(yk) = β′xk+ εk.
Then, the latent variable Y has a lognormal distribution with support
[0,∞) and the thresholds for the condition states are also within this range.
The software that the authors have used for the estimation, identified the
model by setting the first threshold equal to 0, which corresponds to setting
log(τ1) = 0 ⇒ τ1 = 1. This model was later extended by Madanat et al.
(1997) to a random effects model by the inclusion of another error term to
reflect the differences (heterogeneity) between structures.

The approach suggested by Madanat et al. (1995), which was later ap-
plied by Baik et al. (2006) to the problem of modeling deterioration of
wastewater systems, has a number of shortcomings. In what they see as
an advantage, the option to estimate transition probability matrices for
individual bridges requires a significant amount of inspection data and the
suggested averaging of transition probabilities to obtain transition matri-
ces for groups of bridges is faulty. Transition probabilities for groups of
bridges should be directly estimated using the inspection data from all
bridges within the group and not by averaging the transition probabilities
of the individual bridges. A more fundamental shortcoming is related to the
dependence of transition probabilities on bridge ages. The authors state
that “the transition probabilities are explicitly ... nonstationary”, because
they are a function of time or the age of the bridge. The truth is that the
aspect of time is included as an explanatory variable in the linear model
and it is used to estimate a transition probability matrix of a stationary
Markov chain. For example, take

Y (t) = β0 + β1t+R, with R ∼ N (0, 1) (2.24)

as a simple model to describe the uncertainty in deterioration over time
t. The probability of no transition between time t0 = 0 and the first
inspection at time t1 is given by the probability that the amount of deteri-
oration at time t1 has not exceeded the first threshold τ1: Pr{Z = 0 | t1} =
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Pr{Y (t1) ≤ τ1}. However, this probability is taken as the probability p00 of
no transition out of the initial state 0 during a unit time. Subsequently, p01
is the probability that the amount of deterioration is somewhere between
τ1 and τ2, p02 that it is somewhere between τ2 and τ3, etc. Therefore,
each transition probability in a row of the transition probability matrix is
related to a different age, but they are used in a transition matrix for a
single unit time which is used to model transitions at all ages.

Although the inclusion of an unobserved continuous deterioration mech-
anism may seem to be attractive, the example model in Equation (2.24)
shows that the linear model with Gaussian errors is really too restrictive to
model uncertain deterioration. Since the expected amount of deterioration
at t = 0 is equal to the intercept β0 in the example model, it makes sense
to indentify the model by setting β0 = 0 instead of fixing one of the state
condition thresholds, as the object is expected to be in a perfect state at
the beginning of its service life. The coefficient β1 can be interpreted as the
rate of deterioration per unit time. Because the uncertainty in the amount
of deterioration is added to the model as a random error, the variance in the
amount of deterioration is constant over time. Also, the error is assumed
to be standard normal such that the standard deviation is always equal to
one. The choice for a unit variance is a convention, because the variance
may be chosen arbitrarily. The choice for µ = E[R] and σ2 is part of the
model identification. It affects the coefficients β but not the probability
of the outcome. Together with the fact that only linear deterioration can
be modeled, these characteristics of the model in Equation (2.24) make it
unattractive for modeling uncertain deterioration over time. It is there-
fore advised not to include time or age as an explanatory variable in the
regression model.

Under the assumption that the Markov chain is sequential with a transi-
tion matrix similar to the one shown in Equation (2.2), Bulusu and Sinha
(1997) proposed to use a binary probit model for fitting the Markov chain to
inspection data. A restrictive requirement for the application of this model
is that only one transition occurs during the time between two successive
inspections. The problems previously described for the probit model sug-
gested by Madanat et al. (1995) are further aggrevated by the inclusion of
a binary random variable in the linear model from Equation (2.21), which
equals one if a transition took place in the previous inspection interval and
zero otherwise. This attempt at incorporating time dependence into the
model, directly violates the Markov property, which must hold if a Markov
chain is used.

Similar to Bulusu and Sinha (1997), Yang et al. (2005) apply the same
model, but without the extra binary variable and the errors R are assumed
to have a logistic distribution as in Equation (2.23). This is therefore a
binary logit model as described earlier. The authors refer to this approach
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as ‘logistic regression’, although this terminology is also used by some to
refer to regression with a log-linear model.

Non-parametric models

On page 31, the nonparametric maximum likelihood estimator for counting
processes was already shortly mentioned. Parametric models have a finite
number of parameters, whereas nonparametric models do not. A typical
example of a parametric model is the continuous-time Markov process with
constant transition intensities; see Equation (2.7). Another example is a
inhomogeneous Markov process with transition intensities which depend
on the age of the structure: qij(t). A parametric approach assumes a
continuous (or smooth) function with a finite number of parameters for
the transition intensities. The nonparametric estimate λ̂(t) for counting
processes proposed by Wellner and Zhang (2000) is a piecewise continuous
function of t which is constant between the occurrence times of transitions.

Non-parametric models are typically used in the analysis of life data,
which is a field of research known as ‘survival analysis’. They are most
appropriate for analysis of past events and do not lend themselves very
well for future predictions. If one would want to make decisions on future
performance, based on past experience, the nonparametric model must be
smoothed in order to determine a future trend. A minimum requirement
of the nonparametric estimators is that at least some events are observed.
In the case of transitions between conditions, this means that the actual
times of transitions must be observed. Various forms of censoring may
be incorporated into the estimators, but a minimum number of actual
observations are absolutely necessary.

DeStefano and Grivas (1998) discuss the application of a nonparamet-
ric estimator for the waiting time distribution in a semi-Markov process.
Several assumptions are made: condition states transition only to the next
state and the waiting time distribution is uniform with parameters tmin and
tmax. The somewhat unusual choice for a uniform distribution is due to
the assumption that no specific knowledge about the waiting time is avail-
able or can be obtained. The authors concede that periodic inspections
will never supply the decision maker with exact transition times, therefore
they assume that if a transition occurred between two inspections, it oc-
curred halfway the inspection interval. As the bridges are assumed to be
inspected twice a year, this transition time is assumed to be sufficiently ac-
curate. Also, it is implicitly assumed that no more than a single transition
can take place between two inspections. With this critical assumption it is
then possible to use the well known Kaplan-Meier estimator for the survival
function. Although a Weibull probability distribution for the waiting time
would have been more appropriate (to model increasing transition rates),
it is primarily the subjective selection of ‘virtual’ transition times which
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make the model proposed by DeStefano and Grivas (1998) unattractive.
Detailed inspections can not be performed throughout a large network at
a sufficiently high frequency to ensure that no significant errors result from
the proposed assumption.

Finally, a nonparametric estimator known as the ‘Aalen-Johansen’ esti-
mator is mentioned. Aalen and Johansen (1978) proposed this estimator
for inhomogeneous Markov chains under censoring. Like the Kaplan-Meier
estimator, it is a so-called ‘product-limit’ estimator which uses the concept
of the product integral; see Section 7.2.2 in the appendix. The estimator
has not been applied in the context of deterioration of civil infrastructures.
Like all other nonparametric estimation models, this estimator can not be
used if only instantaneous condition measurements are available. Aalen
and Johansen (1978) discuss a general censoring process which takes on
the values zero and one. This process must be integrable, meaning that it
should be equal to one for a measurable amount of time. In other words:
the structure must be observed during a longer period of time at least once
in its lifetime. As bridge inspections are assumed to be instantaneous, this
approach is not viable for the application in bridge management.

2.3.3 BAYESIAN METHODS

Instead of the maximum likelihood approach in the section entitled “Multi-
nomial model for Markov chains” on page 32, it is possible to use a Bayesian
approach. The multinomial distribution of the observed count of transi-
tions out of each state is now the likelihood of the observations given the
model parameters. In the Bayesian framework, the model parameters, be-
ing the transition probabilities, are given a prior distribution which reflects
the modeler’s belief in the value each pij and his uncertainty about these
values. Let gi(pi1, . . . , pin) represent the prior probability distribution for
the transition probabilities out of state i, then the natural candidate for
this distribution is the Dirichlet distribution. The Dirichlet distribution,
or multivariate beta as it is referred to by Lee et al. (1970), defined as

g(pi1, . . . , pin) =
Γ
(∑n
j=1 αij

)∏n
j=1 Γ(αij)

n∏
j=1
p
αij−1
ij , (2.25)

with parameters αij > 0, i, j = 1, . . . , n and the gamma function

Γ(a) =
∫ ∞

0
ta−1e−tdt, for a > 0,

is a conjugate prior for the multinomial distribution and it restricts the
random variables to 0 ≤ pij ≤ 1 and to

∑n
j=1 pij = 1. When using

a conjugate prior distribution, the posterior distribution g(p |nij(t)) ∝
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fi(nij(t) |p)g(pi1, . . . , pin), where pi = {pi1, . . . , pin} and ni(t) = {ni1(t),
. . . , nin(t)}, belongs to the same family. The parameters of the posterior
distribution are simply the count of transitions added to the parameters of
the prior distribution: αij +nij . The posterior estimate for the transitions
probabilities is

p̂ij = E(pij |ni1, . . . , nin) = αij + nij∑n
j=1 αij + nij

.

Bulusu and Sinha (1997) compare the application of the Bayesian approach
as described here to the application of a binary probit model to bridge
deterioration modeling. For a more elaborate derivation, see Lee et al.
(1970). Neither references discuss how the parameters αij of the prior
distribution can be elicited by experts. A sensible approach is proposed by
van Noortwĳk et al. (1992) where experts give their initial estimates for the
transition probabilities pij as percentages. First, they estimate the number
n∗ij of transitions from state i to j per unit of time. This estimate results in
an expected value for the transition probability pij by setting p∗ij = n∗ij/ni,
where the total number of transitions out of state i is set to ni = 100.
Next, the parameters for the prior distribution in Equation (2.25) follow by
setting the expectation for Pij , which is E[Pij ] = αij/α0 with α0 =

∑n
j αij

equal to the estimate p∗ij , such that

p∗ij = αij
α0

=⇒ αij = α0p
∗
ij .

The parameter α0 controls the variance of the estimator and thus reflects
the strength of belief in the inspector’s estimate. It is determined sepa-
rately. Aside from this, special care should also be taken with weighting
the opinion of multiple experts.

For the estimation of transition probabilities in a Markov model for storm
waterpipes, Micevski et al. (2002) apply a different Bayesian approach.
First, a non-informative (uniform) prior distribution is used for the tran-
sition probabilities. Second, the likelihood of the observed states is given
by

L(n(t) |θ) =
∏
t

∏
j

pj(t)nj(t),

where pj(t) = Pr{X(t) = j} is the state distribution as defined in Equa-
tion (2.12) and nj(t) is the number of states observed to be in state j at
time or age t. The prior distribution is not conjugate, therefore the authors
use a Markov chain Monte Carlo method to sample the posterior distribu-
tion over the unknown transition probabilities. Notice that the observation
data is in the form of state counts, which is similar to the aggregate data
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used in the regression based models discussed in the section entitled “Re-
gression using the state distribution” on page 27. This approach therefore
suffers from the same shortcoming that the observed states are treated as
conditionally independent. There is no probabilistic link between two con-
secutive inspections of a structure, even though this is the basic assumption
of the underlying Markov chain.

2.4 TESTING THE MARKOV PROPERTY

There exist statistical tests to verify if the Markov property holds for the
observed data. In general, all tests require full observations of the Markov
processes and a sufficiently large number of observations to ensure accurate
results. Unfortunately, both requirements are often not met. This poses a
problem for the decision maker, who has assumed that the data is Markov-
ian and wants to verify if his assumption is valid. For Markov chains where
each transition is observed, there are a number of tests for the Markov
property and for time dependence. One of the earliest references for these
type of tests is Anderson and Goodman (1957). A more recent discussion
in the context of economic analysis can be found in Bickenbach and Bode
(2003).

A simplified test, equivalent to the tests described by Anderson and
Goodman (1957), for the Markov property in bridge inspection data is
presented in Scherer and Glagola (1994). Basically, the authors test the
statistical significance of the difference between the probability of a se-
quence of three states {i, j, k} and the probability of the sequence {j, k} by
use of a contingency table. Let

pijk = Pr{X(t3) = k |X(t2) = j,X(t1) = i}, (2.26)

then the Markov property assumes that p0jk = p1jk = p2jk = · · · = pjk.
The number of observations for each sequence can be placed in a contin-
gency table in order to calculate the value of the Chi-square test. Although
not all possible sequences could be tested (due to lack of data), those se-
quences that were tested by Scherer and Glagola (1994) did not result in
a rejection of the null hypothesis, which is the hypothesis that the (first
order) Markov property holds.

Whether or not a test for the Markov property can effectively be per-
formed largely dependends on the type of data which is available to the
decision maker. As explained in the introduction to this chapter, observed
bridge condition states may be aggregated, which makes testing the Markov
property practically impossible. In the Netherlands, bridges are inspected
throughout the year and at different intervals, which results in panel data.
Although the individual state histories are known to the decision maker,
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the times between inspections may vary significantly. Therefore, it is pos-
sible to count the number of sequences {i, j, k} in the data but the states
in this sequence may be observed at very different times. A simple count
of sequences therefore ignores the fact that the observation times t1, t2 and
t3 in Equation (2.26) are almost always different. This makes the validity
of such tests questionable.

Unless the transitions of a Markov process are directly observed and
a large number of observations are available, it must be concluded that
testing the hypothesis of the Markov property is not practically feasible.
This conclusion was also drawn by Kay (1986), who proposed a possible
solution using interpolation to recreate transition times, but conceded that
this is a rudimentary workaround.

2.5 USING SEMI-MARKOV PROCESSES

Markov chains and continuous-time Markov processes are most often ap-
plied due to their computational tractability. However, concerns are some-
times raised about the constant transition intensity in each state. Because
deterioration is at least partially or completely due to aging, some argue
that it would be appropriate for the model to include aging. The most com-
mon probability distribution for the waiting time in each condition state,
which enables the inclusion of aging, is the Weibull distribution. The cu-
mulative distribution function for the Weibull distribution is given by

F (x) = 1− exp{−(λx)β} (2.27)

with scale parameter λ > 0 and shape parameter β > 0. The hazard rate,
defined by

h(x) = f(x)
1− F (x)

,

for the Weibull distribution is βλ(λx)β−1. If β = 1, then the hazard
function is constant and the Weibull distribution reduces to the exponential
distribution defined in Equation (2.5). If β > 1 the hazard rate is increasing
and therefore the probability of a transition out of the current state in the
immediate future increases as the length of stay increases.

Although this approach may seem more appropriate from a physical point
of view, the absense of the memoryless property results in a model which is
difficult to work with. This is especially true when the deterioration process
is not continuously monitored and only panel data is available. An example
is the calculation of the time to failure in Kleiner (2001), which is given by
a sum of Weibull distributions. As there is no analytical solution for the
sum of Weibull distributed random variables, the author uses Monte Carlo
simulation to obtain a numerical approximation. In the same paper, the
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author concedes that there is insufficient data to estimate the parameters
of the waiting times and proposes that these be determined by expert judg-
ment. Mishalani and Madanat (2002) suggest to use a maximum likelihood
approach which takes into account left- and right-censoring in the waiting
time. However, their approach assumes that there are only two states and
that the time of (re)construction is known. Each inspection therefore re-
sults in one of two possible observations: the transition has taken place
before the inspection or it has not yet taken place. Another feature of the
approach in Mishalani and Madanat (2002) is that the Weibull distributed
waiting time is used to determine transition probabilities in a Markov chain
which is necessarily nonstationary.

Another approach based on maximizing the likelihood of the observations
is presented by Black et al. (2005b) and compared to Markov chains and the
delay time model in Black et al. (2005a) using a case study. This approach
is quite similar to the regression methods which use the state distribution as
previously discussed in the section “Regression using the state distribution”
on page 27, only now the waiting times are represented by Weibull random
variables. This approach therefore suffers from the same shortcomings,
like the fact that successive observations are essentially treated as being
independent. An important assumption is that the construction year and
the initial state distribution are known, such that the probability of being in
an observed state can be used to calculate the likelihood of the observations.
The reason why there is a common perception that the probability of a
transition should increase as the time spent in a state increases, is nicely
worded in Black et al. (2005a):

“If the condition states correspond to intervals of an underlying
continuous condition measure, then an item is likely to enter the state
near one boundary and then progress over the time periods to near
the other boundary before leaving the state. Hence the transition
probability is likely to increase as the item approaches the second
boundary, and so the transition probability could often increase with
the time spent in the state.”

As most classification schemes do not assume an underlying continuous
process, like is illustrated with the quote on page 23, this reasoning is not
relevant in most cases.

SUMMARY

This chapter reviews the nature of bridge inspection data and various ap-
proaches which have been suggested and applied to fit a finite-state Markov
process to this data. Most statistical models ingnore the fundamental as-
sumption of Markov processes; namely that the future states are indepen-
dent of past states given the current state. These models use the state
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observations as individual and independent observations, whereas there
should be dependence between successive observations of the same struc-
ture.

A better approach is to use the maximum likelihood principle, but the
Poisson regression model on page 29 is too restrictive and the multinomial
model on page 32 can only be used if the structure is continuously mon-
itored. Other approaches, like a Bayesian approach or a nonparametric
model, suffer from various shortcomings which make them unattractive for
decision makers.

Practically all bridge condition data, obtained using visual inspections,
is in the form of panel data; that is, throughout the year inspections are pe-
riodically performed at different intervals which results in a form of interval
censoring. This heavily censored data can not be used to adequately test
the validity of the Markov assumption. However, the Markov assumption
is made by the decision maker in order to develop a tractable deteriora-
tion model. Even if the underlying deterioration process does not possess
the Markov property, the assumption is necessary to be able to efficiently
calculate the outcome, which is required for decision making.
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3
Proposed framework

Given the conclusions drawn in the previous chapter on the various ap-
proaches to fitting finite-state Markov processes to bridge condition data,
this chapter describes the appoach selected for application to bridge con-
dition data in the Netherlands. The likelihood function plays a central
role in this approach and may be defined for perfect and imperfect inspec-
tions. The calculation of the likelihood of the observed bridge conditions
involves the calculation of the transition probability function Pij(s, t) =
Pr{X(t) = j |X(s) = i}, which gives the probability of a transition from
state i to state j between ages s and t for s ≤ t. The calculation of Pij(s, t)
is not straightforward, therefore several methods are presented separately
in Chapter 7. Attention is also given to covariate analysis, which tests if
considering different groups of bridges will considerably influence the out-
come of the model. Also, Section 3.4 lists the data requirements for the
successful application of this estimation procedure.

3.1 MAXIMUM LIKELIHOOD ESTIMATION

For a given set of data, the likelihood is defined as the probability that
the chosen model generates the data. It is simply the joint density of
the random variables of the model. For the purpose of estimation, the
likelihood is considered to be a function of the unknown model parameters
(Mood et al., 1974, p.278).

Given the sample set x = {x1, x2, . . . , xn}, the likelihood that the set
of parameters θ = {θ1, . . . , θm} generates the data is given by the like-
lihood function L(θ;x). The notation (θ;x) means that it is a function
of θ given the data x, but that it is not a conditional probability. Obvi-
ously, 0 ≤ L(θ;x) ≤ 1. The problem of estimation is now reduced to a
problem of maximizing the likelihood function; that is, to find those val-
ues for the model parameters which maximize the likelihood function. An
equivalent problem arises when taking the natural logarithm of the likeli-
hood function. The locations of the maxima of the log-likelihood function
`(θ;x) = logL(θ;x) and the likelihood function L(θ;x) are the same. It
is generally easier to work with the logarithm of the likehood function as
opposed to working with the likelihood function itself. This is especially
true if the observations of the model are considered to be independent. Let
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fM (x) be the probability of taking a sample x from the model M , then
under the assumption of independent sampling the log-likelihood function
is given by

`(θ;x) = log
∏
i

fM (xi) =
∑
i

log fM (xi) (3.1)

for samples xi, i = 1, 2, . . .. Here, the dependence of the model M on the
set of parameters θ is surpressed; i.e., M ≡M(θ).

The use of maximum likelihood estimation for panel data is quite com-
mon. The likelihood function as given by Equation (3.1) can readily be
found in the literature. For example, it is common in publications in the
field of medical statistics: Jackson et al. (2003) provide an overview, which
includes Kay (1986). The latter discusses the application of a continuous-
time Markov process to the development of cancer markers over time.
These markers are used to grade levels of disease in order to identify vari-
ous states in the development of an illness. An important reference is the
paper by Kalbfleisch and Lawless (1985), which includes many of the top-
ics discussed in this chapter and uses an example of a longitudinal study
of smoking habits of school children. Like many studies, the assessment
of smoking habits is done at infrequent moments in time at which a large
group of subjects is evaluated at the same time. This results in panel
data and Kalbfleisch and Lawless (1985) used Fisher’s method of scoring
in combination with the diagonalization method for calculating the tran-
sition probability function (see page 115 in Chapter 7). The method of
scoring will be presented in Section 3.3.

Other than the fact that it is particularly well suited for application
to panel data, maximum likelihood estimation has the additional ben-
efit that, under suitable conditions and if the sample set is sufficiently
large, the estimator is approximately Gaussian (i.e., normally distributed).
According to a well known theorem (see e.g., Mood et al. (1974, The-
orem 18 on page 359)) the estimator θ̂∗ of the true value θ∗ asymp-
totically has an m-dimensional multivariate normal distribution: θ̂∗ ∼
MVNm(θ∗, Ie(θ∗)−1)/n. Here, Ie(θ) is the expected information matrix,
which will be discussed in the next section.

The concept of maximum likelihood estimation was developed in the
early 20th century by British statistician R.A. Fisher (1912 and 1922) and is
now a common method for statistical inference. In the following section, the
likelihood functions for both perfect and imperfect periodic observations of
a finite-state Markov process are derived.
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3.2 STATISTICAL MODEL

As the model under consideration is a stochastic process, an observation of
the model M is a collection or sequence of one or more state observations
at successive times t1 < t2 < · · · < tn. The process starts at t0 = 0 and it
is assumed here that the initial state X(t0) is known to the decision maker.
For ease of notation, Xk ≡ X(tk) is used in the following discussion.

3.2.1 LIKELIHOOD FUNCTION FOR PERFECT OBSERVATIONS

The likelihood function for perfect observations is quite straightforward.
With ‘perfect’, it is meant that no error is made in the assessment of the
true condition state of the structure or component. For each object, a se-
quence {X1, X2, . . . , Xn} of state observations is available. The probability
of each sequence may conveniently be written as a product of transition
probability functions:

Pr{X1, X2, . . . , Xn} = Pr{X0}
n∏
k=0

Pr{Xk+1 |Xk}, (3.2)

where the probability distribution of the initial condition state Pr{X0} is
assumed to be known.

Special attention should be given to the case where an observed transition
is not possible given the model. In this case, Pr{Xk+1 |Xk} = 0 and
taking the logarithm will result in an error. This situation can arise if only
deterioration is allowed, but an improvement in the condition is observed.
These cases should simply be discarded by the implementation. There
are two options for how to deal with these cases: discard the impossible
transition or discard the complete sequence of observations of which the
transition is a part. In order to use as much data as possible, the first
option is preferred. However, this may be subject to debate because it may
seem more natural to choose for the second option. In the next section,
a model which allows for imperfect inspections will be presented and the
algorithm used in this model discards the complete sequence of observed
bridge conditions.

3.2.2 LIKELIHOOD FUNCTION FOR IMPERFECT OBSERVATIONS

In order to model the subjectiveness of visual inspections and the natural
variability which arises from this, it is possible to consider that inspections
may not accurately describe the true state of the process. By ‘imperfect’
it is meant that there exists a true state and that, with some probabil-
ity, an inspection may indicate a different state other than the true state.
Other suitable designations for this topic include ‘inspection accuracy’ or
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Figure 3.1: Graphical representation of a
hidden Markov model.

‘inspection variability’. It is noted that an inspector can never be blamed
for making ‘inaccurate’ observations, as he or she is required to give a
personal assessment which, in his or her view, best reflects the condition
state.

This subject has been of great interest in the past and with good reason.
It is obvious that the personal interpretation of condition states, like those
in Tables 1.1 and 2.1, and how these relate to damages on structures will
vary substantially between inspectors. A study by Phares et al. (2002)
has shown that there is indeed a substantial difference between the ratings
from different inspectors. This variability may also account for some of
the increases in the quality of structures which can not be attributed to
maintenance. In general, data sets from inspections will include transitions
towards better conditions, which can not be eliminated on the basis of being
a result of maintenance. Since a monotonically increasing Markov process
for modeling deterioration can not cope with condition improvements, these
pose a challenge for the decision maker. In various studies, such as those
conducted by Kallen and van Noortwĳk (2005b) and Morcous (2006), the
condition improvements are simply removed from the data.

A modeling approach for incorporating imperfect inspections and which
is commonly applied to problems in speech recognition, is the use of a
hidden Markov model. Although visual inspections are the only means
by which the state of deterioration may be measured, the hidden Markov
approach assumes that there is some true condition state which is ‘hidden’
to the observer. Figure 3.1 shows a graphical representation of the hidden
Markov model.

In this figure, the true states X1, X2, . . . , Xn at the inspection times
t1, t2, . . . , tn are hidden behind the actual observed states Y1, Y2, . . . , Yn.
The probability of the observations, given the true state, is given by eij =
Pr{Yk = j |Xk = i}, where 0 ≤ eij ≤ 1 and

∑
j eij = 1. The (discrete)

probability distribution ei = {ei1, . . . , ein} reflects the variability in the
inspections. These ‘error’ distributions can be assessed by expert judg-
ment, testing a pool of experts using selected test cases, or by maximum
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likelihood. The decision maker must also choose how large the inspectors’
mistakes are allowed to be. He may restrict the model such that only an
error of one state (higher or lower) can be made.

The observed sequence Y1, Y2, . . . , Yn has several properties, but it does
not possess the Markov property. One of the primary problems involved
with the use of hidden Markov models, is determining the probability of
the observed sequence given the model. This probability is required for
maximum likelihood estimation. Most properties rely on the basic property
that, conditional on the true process, the observations Yk for k = 1, . . . , n,
are independent; that is:

Pr{Y1, . . . , Yn |X1, . . . Xn} =
n∏
k=1

Pr{Yk |Xk}.

The probability of the observed sequence may be determined by

Pr{Y } =
∑
∀X

Pr{Y ,X} =
∑
∀X

Pr{Y |X}Pr{X}, (3.3)

where Y = {Y1, . . . , Yn} andX = {X1, . . . , Xn}. The summation in Equa-
tion (3.3) is taken over all possible sequences X. As this approach is com-
putationally very inefficient, there exists the ‘forward-backward’ algorithm.
The forward part of this algorithm is most frequently used to calculate the
likelihood of the observed sequence. Let the forward variable be defined as

α
(k)
i = Pr{Y1, Y2, . . . , Yk, Xk = i},

which is the probability of the observations up to time tk and the true state
at time tk being equal to i. The forward algorithm starts with k = 1:

α
(1)
i = Pr{Y1, X1 = i |X0} = Pr{Y1 |X1 = i}Pr{X1 = i |X0}

and continues for k > 1 using the relation

α
(k+1)
i = Pr{Yk+1 |Xk+1 = i}

∑
j

α
(k)
j Pr{Xk+1 = i |Xk = j} (3.4)

up to α(n)
i . The likelihood of the complete sequence of observations may

then be obtained by summing over all Xn:

Pr{Y1, . . . , Yn} =
∑
i

α
(n)
i .

This approach is also referred to as the Baum-Welch algorithm. The prop-
erties of hidden Markov models, on which this algorithm relies, are dis-
cussed and proven in MacDonald and Zucchini (1997).
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Note that this algorithm will set the likelihood of the complete condition
history of a structure to zero if one of the transitions is not possible with
the given model. This can be observed in Equation (3.4):

if α(k)
i = 0 for all i, then

∑
i

α
(n)
i = 0 for n ≥ k.

In order to check the correctness of the implementation of this model,
one can take the probability of a misclassification to be zero and compare
the results of the model with those obtained from the model with perfect
inspections. For this, one should set eii = 1 and eij = 0 for i 6= j and let
the model for perfect inspections discard complete observation sequences if
one of the transitions in the sequence is not possible. Also, the probability
of the first observed condition must be one, i.e. Pr{Y1 = y1} = 1 for the
observed state y1.

Some other approaches to this problem can be found in the literature.
For example, Jackson et al. (2003) formulate Equation (3.3) as a product
of matrices, which is just the forward-backward algorithm in matrix for-
mulation; see also MacDonald and Zucchini (1997, p.61). In Cappé et al.
(1998), the likelihood of the observed sequence is rewritten as

Pr{Y1, . . . , Yn} =
n∏
k=1

Pr{Yk |Y1, . . . , Yk−1}

=
n∏
k=1

∑
j

Pr{Yk, Xk = j |Y1, . . . , Yk−1}

=
n∏
k=1

∑
j

Pr{Yk |Xk = j}Pr{Xk = j |Y1, . . . , Yk−1}.

Using the logarithm of this result, they propose a recursive algorithm which
also enables the calculation of the derivatives with respect to the model
parameters iteratively.

The name ‘hidden’ is primarily used in the area of speech recognition,
where Rabiner (1989) is often cited. In the field of operations research, the
same model is referred to as a ‘partially observable’ Markov model. The
latter has been applied to the problem of bridge management by Ellis et
al. (1995), Jiang et al. (2000) and Corotis et al. (2005). The same model
has also been referred to as a ‘latent’ Markov model and applied to bridge
management by Madanat (1993) and Smilowitz and Madanat (2000). In all
of these publications, the use of a hidden Markov model is combined with
a Markov decision process (see the section on Markov decision processes
on page 87).
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3.2.3 COVARIATE ANALYSIS

Covariate analysis is often used in the field of survival analysis and aims
to determine which ‘covariates’ influence the outcome of the model. Co-
variates are simply additional variables, also called ‘independent’ variables,
which take on two or more values depending on the properties of a structure.
In medical applications, a very common covariate is the sex of patients. As
an example, let Xs represent this covariate and let Xs = 0 if the patient is
a male and Xs = 1 if the patient is a female. In essence, covariate analysis
groups the objects according to one of their properties and then assesses
the impact of this grouping on the estimate of the parameters. If, in the
example of the patients, the outcome is significantly different, it must be
concluded that a patient’s sex is a statistically significant variable in the
model. Using a mathematical formulation: suppose one wants to estimate
the transition intensity λ > 0 in a continuous-time Markov processes, then
the covariate model looks like

λs = exp{β0 + β1Xs}, (3.5)

where β0 is the intercept and β1 is the coefficient of the variable Xs. Using
this reparametrization, the ‘new’ parameters β = {β0, β1} are estimated.
The model in Equation (3.5) is referred to as a multiplicative model, where
exp{β0} represents the ‘base rate’ and exp{β1Xs} is the adjustment due
to Xs. If β1 turns out to be close to zero, such that the adjustment is
close to unity, it may be concluded that grouping of patients according to
their sex does not influence the outcome of the estimation. A formal test
like a likelihood ratio hypothesis test may be used to validate or reject the
hypothesis that a covariate is not statistically significant.

In Skuriat-Olechnowska (2005), a simple Wald test was used for the
purpose of testing the statistical influence of each covariate in the analysis.
Using the fact that the maximum likelihood estimator for each coefficient
βk, k = 0, 1, 2, . . . , is asymptotically normal, the Wald test defines the
Z-statistic as the ratio

Zk = β̂k − βk
SEβ̂k

,

where SEβ̂k is the standard error of the estimator β̂k. The standard error is
the estimated standard deviation of the estimator. The null hypothesis is
that the covariate i does not significantly influence the transition intensities.
In other words: that the coefficient βk is not significantly different from
zero. The hypothesis βk = 0 is rejected if the two-sided p-value Pr{|Zk| >
β̂k/SEβ̂k} is small. Basically, the Wald test rejects the hypothesis at (for
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example) the 5% significance level if zero is not inside the 95% confidence
bounds of the estimated coefficient βk.

The log-linear model λ = exp{βX}, with X = {1, X1, X2, . . . , Xn} is a
convenient model, because the positive exponential function ensures that
the requirement λ > 0 always holds. For discrete-time Markov processes,
the transition probabilities p may be reparametrized as

p =
(
1 + exp{−βX}

)−1
, (3.6)

such that 0 ≤ p ≤ 1. Both approaches are particularly well suited for use
in a maximization procedure, which is the topic of the next section.

3.3 MAXIMIZATION

In most practical cases, it is infeasible to analytically maximize the log-
likelihood function, therefore a numerical approach is used. Concepts like
Newton’s method, quasi-Newton methods, and Fisher’s method of scor-
ing are introduced in this section. Fisher’s method of scoring is a quasi-
Newton method specifically used for maximizing likelihood functions and
quasi-Newton methods are approximations to Newton’s method, which is
an iterative approximation scheme with reasonably fast (quadratic) con-
vergence to the root of a differentiable function.

Newton’s method

Newton’s method (also referred to as Newton-Raphson) is a root-finding
algorithm for (systems of) non-linear and continuously differentiable func-
tions. For a vector x = {x1, x2, . . . , xn} and f : Rn → R a differentiable
function, the algorithm attempts to iteratively approximate a root x∗ for
which f(x∗) = 0. The method is based on a Taylor series expansion of the
function f(x) around a value a: f(x) = (x− a)f ′(x), or if solved towards
a: a = x − f(x)/f ′(x). If a = x, then f(x) = 0 and the aim of New-
ton’s method is to approximate the unknown x∗ with iterative adjustments
to a. This is done by taking an initial guess x0 for x∗ and successively
calculating x1,x2, . . . using the relation

xk+1 = xk −
f(xk)
f ′(xk)

, (3.7)

for k = 0, 1, 2, . . . until ‖ xk+1−xk ‖< ε. This algorithm is not guaranteed
to converge, but it converges fairly fast when it does converge. If there are
multiple (local) extremes in the function f , then the algorithm is also not
guaranteed to converge to the global extreme.

The algorithm can also be used for a system of non-linear equations. Let
f(x) = {f1(x), f2(x), . . . , fm(x)}, then Equation (3.7) becomes
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xk+1 = xk − J−1(x)f(xk), (3.8)

where J−1(x) is the inverse Jacobian of f(x). For the system of equations
f(x), the Jacobian is the n×m matrix defined as

J =


∂f1
∂x1

∂f2
∂x1

. . . ∂fm
∂x1

∂f1
∂x2

∂f2
∂x2

. . . ∂fm
∂x2

...
...

. . .
...

∂f1
∂xn

∂f2
∂xn

. . . ∂fm
∂xn

.
The location of the extremes of a function f(x) may be determined by
setting the partial derivatives to each of the variables xi equal to zero and
solving for xi. For x ∈ Rn, this results in the requirement to solve a system
of n (non-linear) equations:

∂f

∂x1
= 0, ∂f
∂x2

= 0, . . . , ∂f
∂xn

= 0.

Let

f ′(x) =

{
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

}
,

then Newton’s step for iteratively approximating x∗, such that f(x∗) = 0,
becomes

xk+1 = xk −H−1(xk)f ′(xk) (3.9)

for k = 0, 1, 2, . . . . Here, H−1(x) is the inverse Hessian matrix of f(x)
defined as

H =



∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2
n

.

If f(x) is a log-likelihood function, then f ′(x) and −H(x) are referred to
as the score function (or efficient score) and the information respectively.
In this context, define

sθi = ∂

∂θi
`(θ;x),

and in vector notation:
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s = ∂
∂θ
`(θ;x)

as the score function. The information is denoted by Io(θ;x) = −∂s/∂θ =
−H(x). The dependence of s and H on θ is suppressed in the notation.

Note that Newton’s method is a method for unconstrained optimization,
which means that the parameters of the function to be minimized are not
constrained. As most practical applications have some restrictions on the
domain of the parameters, a reparametrization is used. For continuous-
time or discrete-time Markov processes, Equations (3.5) and (3.6) may be
used respectively.

Quasi-Newton methods and Fisher’s method of scoring

The adjustment in Equation (3.7) and Equation (3.8) contains the first
derivative of the function f with respect to each parameter and the Newton
step in Equation (3.9) also requires the second derivatives. In most cases,
these derivatives are not easily obtained, therefore they are replaced by
approximations which do not require the derivatives themselves. When
using this approach, Newton’s method is commonly referred to as a quasi-
Newton method.

Fisher proposed to replace the information with the expected value (over
all possible realizations of the model) denoted by Ie(θ;x) = E[I]. This
approach eliminates the need to calculate the second derivatives of the
likelihood function. This can be shown as follows: let f(x;θ) = L(θ;x)
and `(θ;x) = log f(x;θ), then

Iθiθj = − ∂
∂θj

[
1
f

∂f

∂θi

]
= −
[
− 1
f2
∂f

∂θj

∂f

∂θi
+ 1
f

∂2f

∂θj∂θi

]
= sθjsθi −

1
f

∂2f

∂θj∂θi
.

Multiplying each side with the density f(x;θ) and integrating over all
possible values of x results in∫

x

Ioθiθjfdx =
∫
x

sθjsθifdx−
∫
x

∂2f

∂θj∂θi
dx.

As ∫
x

∂2f

∂θj∂θi
= ∂2

∂θj∂θi

∫
x

fdx = 0,
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this reduces to E
[
Iθiθj
]

= E
[
sθjsθi

]
. Because it is generally not feasible

to calculate the expected information, the ‘observed’ information Ioθiθj is
determined instead. The observed information is approximation of the ex-
pectation by the mean over the observed data. For multiple (independent)
observations of the model, the score and information become

sθi(θ;x) = ∂

∂θi
log
∏
∀k

fM(θ)(xk) =
∑
∀k

∂

∂θi
log fM(θ)(xk) =

∑
∀k

sθi(θ;xk)

and

Io(θ;x) = − ∂2

∂θi∂θj
log
∏
∀k

fM (xk;θ) =
∑
∀k

− ∂2

∂θi∂θj
log fM (xk;θ)

=
∑
∀k

Io(θ;xk)

respectively. Therefore, the total score and information are simply the sum
of the individual scores and informations.

3.4 DATA REQUIREMENTS FOR MODEL APPLICATION

There are several requirements which have to be met if bridge inspection
data is to be used in a maximum likelihood estimation procedure as de-
scribed in this chapter. First, there have to be a minimum number of
inspections available for each structure if it is to contribute to the likeli-
hood function. For a model with perfect inspections, these should be

− at least two successive state observations if the bridge was constructed
before registration of inspection results was initiated,

− and at least one if the bridge was constructed after registration of in-
spection results was initiated.

If inspections are assumed to be imperfect, the requirements are that

− there is at least one state observation available if the bridge was con-
structed before registration of inspection results was initiated and that
an assumption be made about the actual state distribution at the time
of the first inspection,

− and there is at least one state observation available if the bridge was
constructed after registration of inspection results was initiated and the
initial state distribution at service start of the bridge is given.

The assumption about the distribution of the actual state at the first in-
spection, is required due to the fact that there is no information about the
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state at the service start of the structure or on past maintenance activi-
ties. The distribution of X1 conditional on X0 is therefore not available
and should be replaced by a distribution over X1 selected by the decision
maker. There is no exact rule for the minimum number of state histories
(i.e., structures available for the analysis) which must be available for a suc-
cessful application of maximum likelihood estimation. A simple guideline
is: the more, the better.

SUMMARY

This chapter presents the theoretical foundation for the maximum like-
lihood estimation of transition intensities in a continuous-time Markov
process. The maximum likelihood approach is particularly well suited for
panel data, because it considers the likelihood of the periodic state obser-
vations and it uses the transition probabilities to determine this likelihood.
The method therefore respects the Markov assumption and it does not rely
on information which is not available, namely information on the exact
times of transitions or the exact length of stay in any state. For the ap-
plication of this method, the data must fulfill certain requirements, which
are outlined in the previous section.

The likelihood function can be defined to achieve several goals: estimate
the model parameters under the assumption that state observations are
perfect (Section 3.2.1) or imperfect (Section 3.2.2), or to determine the
influence of dependent variables in a covariate analysis (Section 3.2.3). The
likelihood must then be maximized as a function of the model parameters,
such that the parameter values are the most likely ones to have generated
the given data. The most common method for maximizing the likelihood
function is Fisher’s method of scoring, which is discussed in Section 3.3.
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4
Application and results

In this chapter, the approach proposed in Chapter 3 will be applied to
bridge condition data obtained in the Netherlands. A general introduction
to the practice of inspecting bridges in the Netherlands was given in Sec-
tion 1.3 on page 6. The most important aspect of bridge inspections is
that individual damages are registered in the database and that the sever-
ity of these damages is then used to set the condition of the structure. The
severity of the damages is also used to set the condition of the basic and
primary components on which the damages are located.

First, a description of the available data sets will be given. Then, various
models with different transition structures are fitted to the data sets. In
Section 4.2.1, this is done for progressive Markov processes which only allow
for deterioration, and in Section 4.2.2, this is done for models which also
allow for transitions to better states. Sections 4.3 and 4.4 respectively dis-
cuss the application of hidden Markov models and the analysis of covariate
influences on the model parameters.

4.1 DUTCH BRIDGE CONDITION DATA

In the Netherlands, bridge inspections register the location and severity of
all damages present on the structure. These severities are then used by
the database and by the inspector to set the condition of the individual
components and the overall condition of the structure. In order to succes-
fully fit a deterioration model, it is necessary to have a sufficient amount
of data. This is especially true for fitting stocastic processes for modeling
uncertain deterioration over time.

4.1.1 QUALITY AND DETAIL OF INFORMATION

Although it is not mandatory, the cause of each damage may be registered
in the database. From a decision maker’s point of view, it may be inter-
esting to identify different physical deterioration mechanisms and to fit the
deterioration model to the historic development of the damages. However,
it is not possible to identify the same damages between successive inspec-
tions in the database. This is because the identification of the location of
each damage is done by issuing a location number on a technical drawing
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of the structure. Inspectors issue these locations anew at each inspection,
therefore the same damage may have a different location number at differ-
ent inspections. From a practical point of view, it is not feasible to visually
check the location of damages for all inspections in the database. After
filtering for incorrect or incomplete entries, there are roughly 6000 inspec-
tion events on 2300 structures which can be used for modeling deterioration
with Markov processes.

There are various reasons why some inspection events or structures may
not be included in the data sets.

− A structure may not have a construction year assigned to it, which is
necessary information for determining the age of structures at the time
of an inspection. The construction year may also be faulty; for example,
it may be after 2004 which is the last year in which inspections were
registered in the database.

− An inspection event may have an incorrect date assigned to it, where
the year of the inspection is before the construction year of the structure
or after 2004.

− A structure may not have undergone enough inspections. In general,
structures should at least have been inspected twice, such that two
reference points in time are available. For structures built after 1985
only one inspection is required, because the initial state (i.e., perfect
or state ‘0’, see Table 1.1) can be used as the first ‘observation’. For
bridges constructed before 1985, it is not known if maintenance was
performed before the registration in the database began.

It is a not an easy task to extract the data from the relational database and
putting this information in a form suitable for estimating the model pa-
rameters. Aside from the easily identifiable faulty data mentioned above,
there are an unknown number of entries in the database which are also
faulty, but which can not easily be identified as such. One such exam-
ple occurs when an inspector incorrectly registers a condition 0, when the
purpose of the inspection was not to assess the condition of the structure.
Some inspections are performed to investigate specific areas or damages
on the structure. These inspections should be registered, but no condi-
tion number should be entered into the database. The analysis of textual
remarks in the database may be able to filter out these entries, but this
requires a significant amount of work.

Another area where mistakes can enter the database is in the dates of
inspections. The date which is registered in the database may not actually
be the date at which the inspection physically took place. The durations
between the inspection dates in the database are collected in a histogram
in Figure 4.1. Even though inspections are performed periodically, there’s
quite a bit of variability in the actual times between these inspections. This
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Figure 4.1: Histogram of the number of
years between bridge inspections in the
Netherlands.

is mainly due to the actual planning and execution of inspections resulting
in different inspection intervals. Some of the differences will also be due to
the fact that the date in the database does not always correspond to the
actual date of the inspection.

All the anomalies mentioned up to now are the result of inconsistent
or erroneous behaviour by the inspectors. There is however another type
of faulty data: the absence of information on when maintenance was per-
formed on the structure. When faced with an increase in the condition
of a structure, the decision maker would like to attribute this increase to
either maintenance or to a difference of opinion between two inspectors.
Although the condition database in the Netherlands has the capability
to register maintenance activities, this feature has seldomly been used.
Morcous (2006) reports the same lack of maintenance data in the bridge
condition data for Québec in Canada.

From this discussion, one may conclude that the quality of the data is
insufficient for use in maintenance management. However, some of the in-
consistencies are the inevitable result of the long duration of 20 years of
operating the database and of the many people involved in the inspections.
Even after filtering for faulty data, the number of observed bridge condi-
tions is very large and is certainly suitable for use in a statistical analysis.

As mentioned in Section 1.3 of the introduction, the inspections do not
lead to a uniform observation of all condition states. The histogram in
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Figure 4.2: Histogram of the observed
states in the bridge condition database in the
Netherlands.

Figure 4.2 shows that states 4, 5 and 6 of the condition scale in Table 1.1
are observed much less often than states 0 to 3. Because the last state,
namely state 6, is extremely rare, it has been combined with state 5 to
form a new state representing the conditions ‘bad’ and worse. The number
of states considered in this chapter, is therefore equal to six.

4.1.2 EXTRACTION FROM DATABASE

The original database is a relational database, which means that the in-
formation is stored in various tables which are related to eachother. The
tables containing the basic information on the structures (e.g., name, lo-
cation, size, etc.) are relatively static as changes in this information are
not frequent. The information obtained through inspections constitutes
the more dynamic part of the database. For each inspection, an entry is
made in a table and each entry is linked to the relevant structure in another
table. This allows information to be added efficiently and in a structured
manner.

For the purpose of a statistical analysis, the relational database is not
the most convenient form for data storage. Therefore the data is extracted
from the database and stored in a spreadsheet. For each inspection, a new
line containing all necessary information for the analysis is written to the
spreadsheet. This includes at least a unique identifier, the year of construc-
tion, the inspection date and the condition state. Other information, for



Section 4.1 ·Dutch bridge condition data

61

example for use in a covariate analysis, may also be included. The final
step in the extraction process, is to prepare the data for use in a program
for numerical analysis. For maximum portability, the data is written to
a plain text file. There are two options for this: 1) each line contains a
transition, or 2) each line contains only an observation. The first option
results in a file of the form

1 249 341 1 3
2 213 306 1 3
3 213 309 1 2
...
17 248 261 1 2
17 261 351 2 3
...

Here, the first column includes a unique identifier. The second and third
columns contain the age in months at two consecutive inspections and the
fourth and last columns contain the condition states at these inspections.
The second option contains the same data in a different form:

1 249 1
1 341 3
2 213 1
2 306 3
3 213 1
3 309 2
...
17 248 1
17 261 2
17 351 3
...

Each observation is on a different line, where the first column includes
the identifier, the second the age in months at the inspection, and the third
the observed state.

The first option can be used for estimating the parameters of the Markov
process when inspections are assumed to be perfect. The second option is
particularly well suited for applications where inspections may vary, but
can equally well be used for models with perfect inspections.

4.1.3 DESCRIPTION OF DATA SETS

In this chapter, four data sets will be used: general condition of structures,
most severe damage condition of structure, superstructure conditions, and
the condition of kerbs. Each of these are briefly explained here.
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General condition of structures

The general or overall condition of the structure is the condition state
which is assigned to the ‘logical structure’ in the database as shown in
Figure 1.5. This data set, and the one described next, contains the most
observations of all data sets. As mentioned earlier, the condition data
assigned to a structure and its components is derived from the severity of
damages registered at each inspection. Therefore, the components will not
be assigned a condition state at each inspection, unless there are one or
more damages present on the component.

Most severe damage on structures

The general condition of a structure is automatically assigned the most
severe condition of the damages present at the time of an inspection. The
inspector must manually change this condition if it is not representative
for the structure as a whole. As a sort of ‘worst case scenario’, the analysis
is also performed on a data set which includes the condition indicators of
the most severe damages registered at each inspection.

Condition of superstructures

The superstructure of a bridge is generally considered to be all structure
above the bearings. This includes the beams, road surface, kerbs, and safety
barriers. In Figure 1.5, superstructures belong to the group of principal
components. This data set includes roughly 5500 observations.

Condition of kerbs

Kerbs (or curbs) are the rims along the roadway, forming an edge for a
sidewalk or for the safety barriers. There are roughly 5500 observations of
kerb condition states.

4.2 SELECTION OF TRANSITION STRUCTURE

Finite-state Markov processes are completely shaped by the transition
structure defined in the transition intensity matrix. This matrix deter-
mines when and to where a transition can take place. Before embarking on
fitting a Markov deterioration process to observed condition data, the de-
cision maker must decide how deterioration may procede. It is possible to
choose a fully filled transition matrix, which allows for transitions between
any two condition states including transitions to better states. This, how-
ever, will generally not be a very useful approach. In this section, various
‘models’ will be fitted to the Dutch bridge condition data. These models
are distinguished by the absence (without maintenance) or presence (with
maintenance) of backward transitions.



Section 4.2 · Selection of transition structure

63

4.2.1 MODELS WITHOUT MAINTENANCE

This section discusses the estimation of transition intensities in sequential
Markov deterioration processes. Structures are therefore only allowed to
move to the next state and not move backwards to better states. The basic
transition intensity matrix is then given by

Q(t) =


−λ0(t) λ0(t) 0 0 0 0

0 −λ1(t) λ1(t) 0 0 0
0 0 −λ2(t) λ2(t) 0 0
0 0 0 −λ3(t) λ3(t) 0
0 0 0 0 −λ4(t) λ4(t)
0 0 0 0 0 0

. (4.1)

An unlimited number of choices are available for the elements λi(t), i =
0, . . . , 4, but only five options will be considered here. These options are
defined in Table 4.1.

Model λi(t) n Description

A a 1 state- and age-independent
B abtb−1 2 state-independent and age-dependent
C ai 5 state-dependent and age-independent
D aibt

b−1 6 state- and age-dependent
E aibit

bi−1 10 state- and age-dependent

where a, ai, t > 0 and −∞ < b, bi <∞ for i = 0, . . . , 4

Table 4.1: Five options for the transition
intensity parameters in a sequential Markov
deterioration process.

This table names the models A to E according to the number of parameters
n included in the model. Model A has only one parameter, whereas model
E has ten parameters. These roughly correspond to the models presented
in Kallen and van Noortwĳk (2006b), only model D has been renamed to E
and an extra model with six parameters has been introduced as model D.
Both models are state- and age-dependent, but compared to model E, the
dependence on age is not state dependent as in model D. For model D, the
age-dependent transition intensity matrix may be written asQ(t) = Qf(t),
where f(t) = tb−1. In other words, the intensity matrix may be decomposed
in an age-constant matrix and a scalar function which changes the intensity
of the transitions over the age of structures if b 6= 1. The choice for the
transition intensity function is arbitrary and λ(t) = abtb−1 is chosen here
to obtain a power law function for the integrated intensity function: Λ(t) =
atb.



Chapter 4 ·Application and results

64

Using the maximum likelihood framework as proposed in Chapter 3, the
five models in Table 4.1 will be fitted to the available data sets. Note that
these are nested models, with model E being the most general formulation,
such that their relative quality of fit may be compared using standard
statistical methods.

Overall bridge conditions

First, all models in Table 4.1 will be fitted to the observed overall condition
states for the structures. Then the relative quality of fit will be compared
such that a verdict can be made as to which model is most suitable for
the data at hand. Note that the estimates for the parameters and the
corresponding log-likelihood values are similar, but different from those
reported in Kallen and van Noortwĳk (2006b). This is because the data
set used to obtain the results in the paper contained quite a few duplicate
entries.

i Model A Model B Model C Model D Model E
ai bi ai bi ai bi ai bi ai bi

0 0.18 1 1.44 0.66 0.61 1 0.48 1.06 1.19 0.85
1 0.18 1 1.44 0.66 0.40 1 0.29 1.06 0.10 1.24
2 0.18 1 1.44 0.66 0.12 1 0.08 1.06 0.10 1.04
3 0.18 1 1.44 0.66 0.04 1 0.02 1.06 0.17 0.77
4 0.18 1 1.44 0.66 0.12 1 0.08 1.06 0.32 0.86

Table 4.2: Estimated parameter values for
the models without maintenance, where the
unit of time is 1 year.

The results of the maximum likelihood estimation for models A to E are
presented in Table 4.2. Even with an ever evolving set of data, the result
for, for example, model A is close to the result reported in Kallen and van
Noortwĳk (2005b). The estimated annual transition intensity is 0.18, such
that the mean waiting time in each state is approximately 5.5 years. The
best estimate for the parameters in model B, where the transition rates
also depend on the age of the structure, results in a decreasing intensity
rate as the structures increase in age. Model C, with state-dependent
transition rates, shows decreasing rates as the condition worsens. The same
can be seen with model D, but with lower rates which increase slightly
with increasing age. Model E, with state- and age-dependent transition
intensities shows a mixed picture. The decreasing transition intensity in
model B can be explained by the fact that bridges spend less time in initial
states compared to later states, which can be seen in the parameters of
model C in Table 4.2. Since there is a positive correlation between the
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Figure 4.3: The probability density of the
time to reach the final state for the models
without maintenance.

age and state of a bridge, bridges have a higher transition intensity in the
earlier stages of life.

Using the results in Table 4.2, it is possible to determine the time required
to reach the last state, namely state 5, when starting from the initial state,
namely state 0. The uncertainty in this time is represented by the ‘lifetime’
distributions in Figure 4.3.

Because state 5 is not considered to be a failure state, these random
times do not represent true lifetime distributions. Therefore, they should
not be compared to the Weibull lifetimes estimated by van Noortwĳk and
Klatter (2004). State 5 should be considered as an undesirable condition
state and a structure in this state should be attended to within a short
period of time. The mean time to reach state 5 and the 90% confidence
bounds (represented by the 5% and the 90% percentiles) for the five models
are listed in Table 4.3.

From this table and the results in Figure 4.3 it can be concluded that
the models can be roughly grouped in two categories: models without state
dependence (A and B) and models with state-dependence (C, D and E).
The models without state dependence result in a much more narrow distri-
bution compared to those with state-dependence. The difference between
the times to reach state 5 for models C, D and E, which have different
waiting time distributions for each state, is very small. The mean time to
reach state 5 for these three models is between 45 and 50 years, which is
roughly halfway the design life of 80 to 100 years for bridges in the Nether-
lands. If state 5 corresponds to a condition level where major renovation
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Model 5% Mean 95%
[yr] [yr] [yr]

A 11 28 50
B 6 25 57
C 14 45 96
D 16 49 107
E 14 50 126

Table 4.3: Mean value and the 5% and 95%
percentiles of the time (in years) to reach
the final state for the models without main-
tenance.
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Figure 4.4: The expected condition state
as a function of age for the models without
maintenance.

is required, then this result is very much in line with current experience in
the Netherlands. A rule of thumb in the Netherlands is that bridges require
major repairs or renovation around 40 years of age. A noticable difference
between models C, D and E is the increasing uncertainty towards higher
ages represented by an increasingly longer tail in the distribution.

Another interesting result is the expected condition state over time as
predicted by the Markov deterioration model. The same grouping accord-
ing to state-dependence or -independence is observed in the expectation
of the deterioration as is shown in Figure 4.4. All models converge to
state 5, which is an absorbing state in all five models. The linearity of the
expectation for model A in the initial states can clearly be observed.
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Relative quality of fit

The likelihood value of the data given a model, is an indicator for the
quality of fit relative to the likelihood values of the other models. The
larger the likelihood value of the model, the larger the probability that
the data could be generated by the model. The same holds for the log-
likelihood values. As can be observed in Table 4.4, the quality of the fit
increases with the number of parameters in the model.

Model Parameters log-likelihood BIC (−2/n)BIC

E 10 −3645 −3685 2.3503
D 6 −3671 −3695 2.3566
C 5 −3677 −3697 2.3579
B 2 −4373 −4381 2.7940
A 1 −4659 −4664 2.9745

Table 4.4: Values of the log-likelihood and
Bayesian information criterion for the fitted
models without maintenance.

For the overall bridge conditions, model E fits best to the data and model
A the least. Because the complexity of the model, and therefore also the
computational effort, increases as more parameters are introduced, a test
of the relative quality of fit can be performed. The purpose of this test is
to determine if increasing the flexibility of the model, results in a statis-
tically significant improvement of the fit. If this is not the case, then the
decision maker may decide not to use the model with more parameters. It
is important to note that all models have been fitted to the same data set,
which means that the log-likelihood values in Table 4.4 may be compared
to eachother. A slightly different data set will naturally result in a different
log-likelihood value. For example, models which allow for backward transi-
tions (e.g., due to maintenance) will be discussed later in this chapter and
as these models allow for more data to be used, their log-likelihood values
will be smaller compared to those in Table 4.4.

In order to test the statistical significance of the improvement in the qual-
ity of fit, the generalized ratio test may be applied. Let L∗A = L(θ∗A;x) and
L∗B = L(θ∗B ;x) be the likelihood functions for models A and B maximized
by their respective optimal parameter values θ∗A and θ∗B , then a well known
theorem (Mood et al., 1974, Theorem 7 on p.440) states that

κ = −2 log
{
L∗A
/
L∗B
}

= −2{`∗A − `∗B}

has approximately a Chi-square probability distribution with degrees of
freedom equal to the difference in the number of parameters between the
two models. Loosely speaking, the hypothesis is that both models are
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equally likely, or, that κ = 0. Given a significance level 0 < α < 1, we
reject this hypothesis if κ > χ2

1−α(r), where χ2
1−α(r) is the 1− α quantile

of the Chi-square distribution with r > 0 degrees of freedom. This means
that if the likelihood ratio of the estimated set of parameter values is in the
top 100×α percent out of all likelihood ratio values which can be obtained,
the difference between the two models A and B is statistically significant.
Using this test, it can be concluded that each model, starting with model A
and ending with model E, represents a statistically significant improvement
over the previous model. Even the small difference between models D and
C is significant. In fact, model D is e8 ≈ 3000 times more likely to generate
the observed data compared to model C.

An important remark must be made here: the fact that age-dependent
Markov models fit better to the data compared to age-constant models,
is not (necessarily) due to the underlying process being age-dependent.
Incorporating age-dependent transition rates merely increases the number
of parameters and therefore the flexibility of the model to adapt to the
data. Therefore, this result does not constitute a proof of transitions in
bridge condition data being age-dependent. In fact, the time-dependence
in model D is not very strong and model E can only be implemented using a
numerical approximation, like the Euler scheme described in Section 7.2.3,
to calculate the transition probability function. From a practical point of
view, model C is therefore a reasonable model to use for the deterioration
process.

Also included in Table 4.4 are the values of the Bayesian information
criterion (BIC) for each of the five models. This ‘measure’ for the quality of
fit for a model M was initially proposed by Schwarz (1978) as `M (θ;x)−
(1/2)dM log(n), where dM > 0 is the dimension of model M and n is the
size of the data set x. It avoids overfitting a model to data by taking into
account the complexity of the model, which is reflected by its dimension.
In essence, it adds a penalty for the number of parameters in the model.
The Akaike information criterion (AIC) aims to do the same, but the BIC
is to be preffered as it will ‘consistently select the true model out of two
contenders’ (Lindsey, 1996). The last column of Table 4.4 contains the BIC
values multiplied by −2/n, which is a formulation commonly found in the
literature. Both formulations support the previous conclusions about the
relative fit of the five models, but the last column in the table highlights
the fact that the improvement is minimal for models beyond model C.

If the expected condition over time for model C is compared with the
observed average conditions in the database, like in Figure 4.5, then the first
conclusion may be that the model does not fit to the data very well at all. In
fact, the model predicts the deterioration to be much faster than the data
suggests. However, the largest number of observations are made at ages less
than 10 years which mostly involves states 0 to 2. Transitions occur quite
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Figure 4.5: Expected condition state of
model C compared to the average condition
state as a function of bridge ages.

fast in these states, because a new structure will become damaged quite
fast. The maximum likelihood estimator tries to follow these observations
more closely compared to those at later ages due to the much larger number
of observations. In the next section, a regression-based method will be used
to estimate the parameters in model C and the result will be compared with
the result presented here.

Comparison with results using regression onto observed states

It is interesting to compare the results obtained by maximum likelihood
estimation, with those obtained by one of the more common estimation
methods found in the literature, namely those using regression. Two for-
mulations of a least squares regression were discussed in the section enti-
tled “Regression using the state expectation” starting on page 26: a non-
weighted least squares regression of the mean of the process X(t) onto the
observed states in Equation (2.11) and a weighted least squares regression
of the state distribution p(t) onto the observed proportion of states y(t) in
Equation (2.13). Using model C from Table 4.1, the regular least squares
formulation of Equation (2.11) did not result in reasonable values for the
parameters. The same holds for the weighted least squares formulation of
Equation (2.13) if all weigths are removed (by setting n(t) = 1 for all t). In
both cases, the transition intensity out of the initial state ‘0’ is extremely
high and the intensities out of the subsequent states are extremely low.

The regression using the weighted least squares formulation in Equa-
tion (2.13) used by Cesare et al. (1994), does converge to more realistic



Chapter 4 ·Application and results

70

bridge age [yr]

co
n
d
it

io
n
 s

ta
te

 [
−

]

0 10 20 30 40 50 60 70

5
4

3
2

1
0

Model C (regression)
Average state

Figure 4.6: Expected condition state for
model C fitted by regression onto the observed
state distribution.

parameter values. These are λ = {0.115, 0.008, 0.003, 0.001, 0.003}. The
expectation of the model with these parameter values, is shown in Fig-
ure 4.6 and is visually more appealing compared to the result in Figure 4.5.
The mean of the deterioration process follows the average observed condi-
tion quite closely, especially up to bridge ages of about 40 years for which
the greatest number of observations are available. From this perspective,
this approach may seem more appropriate for fitting Markov processes to
bridge condition data. However, the log-likelihood of the data being gener-
ated by model C with the aforementioned parameter values is −5050, which
is much smaller than the log-likelihood of −3677 obtained using the para-
meters in Table 4.2. Therefore the maximum likelihood approach results
in a better fit from the perspective of transitions.

Also, the mean time to reach the absorbing state 5 from the initial state
0 is 142 years for the model with the parameters estimated by regression.
The corresponding probability distribution is shown in Figure 4.7. The
very long time to reach the final state is not realistic.

The primary objection raised against the regression models in Section 2.3,
is that they do not account for the Markov property in the deterioration
model. The result of this is clearly observable in Figure 4.6, which shows
that the model tries to closely follow all observed states. However, the
condition states observed for structures at an age above 35 to 40 years,
are known to be less reliable because major renovation is often performed
around these ages. Even if there is no record of maintenance available,
it is very likely that maintenance is included in the observed condition
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Figure 4.7: Probability of the time to reach
the final state for model C which is fitted using
regression onto the state distribution.

states. The most reliable information is therefore given by observations of
structures of age less than 35 to 40 years. Since most condition data in the
Netherlands belong to this category, the maximum likelihood estimation is
primarily driven by these more reliable observations.

Distribution of the estimated parameters

The third problem of statistical modeling, as defined by Fisher (1922), is
the problem of determining the probability distribution of the estimator.
As mentioned in Chapter 3, the maximum likelihood estimator has the
pleasant property that the estimator is asymptotically normal (or Gauss-
ian). This means that the estimator tends to have a normal distribution if
a sufficient number of samples were used in the estimation.

The robustness of the estimation procedure may be tested by performing
a bootstrap. A bootstrap consists of sampling a large number of new data
sets from the original data set and estimating the model parameters using
these new data sets. Therefore, the bootstrap technique is just another way
of determining the distribution of the estimator. If the procedure is robust,
the estimated parameters for the model using these new data sets should
be close to the estimated parameters of the original data set and they
should be approximately normally distributed as explained above. Here,
a bootstrap has been performed on the overall bridge condition data set
by randomly (i.e., uniformly) sampling, with replacement, approximately
2300 condition sequences and thus creating 100 new data sets of the same
size as the underlying data set. For model A, Figure 4.8 shows that the
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Figure 4.8: Normal probability plot of the
bootstrapped transition intensity of model A.

estimated transition intensity of the bootstrapped data sets are very close
to the transition intensity of the original data set, which is λ ≡ a = 0.18.

A simple test of normality indicates that the hypothesis of normality
can not be rejected. The linearity of the data in Figure 4.8 shows that the
sample distribution is close to being Gaussian, but has slightly longer tails.

The same bootstrapping technique can be applied to the estimation of
the five parameters in model C. The result for all five parameters is shown
in Figure 4.9, which shows that the estimates are close to the original esti-
mate, but the distribution for all five parameters is not Gaussian. The dis-
tributions are more peaked compared to the Gaussian distribution, which
can be observed in the histograms presented in Figure 4.10. This result
may be due to the fact that the number of available samples is too small
or that the accuracy of the estimation procedure is not high enough. As
the estimates based on the bootstrapped data sets are very close to the
estimates based on the original data set, even small rounding errors or
insufficient computational accuracy may distort the resulting distribution.
In any case, this result is quite good as it shows that the model and the
estimation of the parameters are robust: there are no extreme differences
in the resulting parameter estimates.
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Figure 4.9: Normal probability plots of
the five bootstrapped transition intensities in
model C.
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bootstrapped transition intensities in model C.
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Figure 4.11: Probability density of the
time to reach the final state for the maxi-
mum damage, superstructure and kerb condi-
tion data sets.

Maximum damage, superstructure and kerb conditions

Model C, with state-dependent and age-independent transition intensities,
is also fitted to the available condition data for the maximum damage,
superstructures and kerbs. The probability distribution of the time to reach
the last state and the expected condition state as a function of bridge age,
are presented in Figures 4.11 and 4.12 respectively.

As can be expected, structures deteriorate faster if the most severe dam-
age is used as a representation of the condition. The mean time to reach
state 5 is 37 years compared to 45 (see Table 4.3) when using the overall
bridge conditions. The results in Table 4.5 show that the transition in-
tensity out of the initial state 0 is particularly high at more than two per
year. This means that it generally takes less than half a year for at least
one damage of severity 1 to appear. The condition development of super-
structures and kerbs is quite similar, although the kerbs have significantly
more uncertainty in the higher values for the time to reach state 5. This
also results in a higher expectation for the time to reach state 5, namely
49 years compared to 43 years for superstructures.

The 90% confidence bounds in the results for superstructures and kerbs
are not noticably narrower compared to those of the overall bridge condi-
tions shown in Table 4.3. Although it might have been expected that these
bounds would be narrower due to the fact that there is less variability in the
source of the conditions (i.e., the overall bridge condition data is based on
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Figure 4.12: Expected condition state as a
function of age for the maximum damage, su-
perstructure and kerb condition data sets.

Data a0 a1 a2 a3 a4 5% Mean 95%
[yr] [yr] [yr]

Max. damage 2.168 0.605 0.290 0.058 0.076 10 37 79
Superstruc. 0.198 0.394 0.118 0.062 0.092 16 43 85
Kerbs 0.248 0.564 0.121 0.040 0.095 16 49 105

Table 4.5: Estimated parameters, the mean
value and the 5% and 95% percentiles of the
time to reach the final state for the maximum
damage, superstructure and kerb data sets.

all components in the structure, whereas superstructures consist of fewer
components and kerbs are themselves assumed to be a component), this
can not be supported by these results.

4.2.2 MODELS WITH BACKWARD TRANSITIONS OR MAINTENANCE

In this section two models with backward transitions will be fitted to the
overall bridge condition. The first model allows for transitions back to the
previous state, refered to as model F, and the second model allows for tran-
sitions back to state 0, which is referred to as model G. The latter model
represents a transition structure in which perfect maintenance is possible.
Because deterioration should always be separated from maintenance (such
that they can be treated separately in the decision model), the purpose

Hyunji Moon

Hyunji Moon
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of this section is simply to observe the behaviour of the data with respect
to backward transitions. Because there are no detailed records of main-
tenance in the database, it may be possible to observe transitions due to
maintenance in the data.

The transition intensity matrix for model F which has the lowest log-
likelihood value is:

Qa =


−1.572 1.572 0 0 0 0
0.216 −0.612 0.396 0 0 0

0 0.120 −0.408 0.300 0 0
0 0 0.336 −0.552 0.216 0
0 0 0 6.228 −6.348 0.120
0 0 0 0 0.120 −0.120

.

Here, the high intensity of backward transitions from state 4 to state 3
is most obvious. In general, structures in states 3 and 4 are more likely
to transition backwards compared to structures in states 1 and 2. This
possibly reflects an increase in the difference of opinion between inspectors
around states 3, 4 and 5. This result has a log-likelihood value of −4777,
which is necessarily lower than the results in Table 4.4, because more data
is used by this model.

Another result for model F is the transition intensity matrix given by:

Qb =


−0.372 0.372 0 0 0 0
0.072 −0.312 0.240 0 0 0

0 0.072 −0.228 0.156 0 0
0 0 0.156 −0.144 0.096 0
0 0 0 0.384 −0.468 0.096
0 0 0 0 0.192 −0.192

.

The model with this transition intensity matrix has a lower log-likelihood
value of −5224, but visually it fits closer to the average of the observed
conditions. This can be observed in Figure 4.13, where model F(a) uses
Qa and model F(b) uses Qb. Although model F(b) is less likely to generate
the data, the parameters in Qb are less extreme compared to those in Qa.
The effect of more transitions going backwards, if starting from states 3
and 4, is also present in Qb.

When comparing the indicator of the most severe damage with the overall
bridge condition, it can be observed that inspectors are more likely to
change the default condition assignment. If there is one damage which
in itself is quite severe, but not representative for the overall condition of
the structure, the inspector will not assign the severity of the individual
damage to the whole structure. In theory, this means that inspectors should
do this for all damage severities, but as was discussed in Kallen and van
Noortwĳk (2006b), this is not the case. If a damage of severity 2 is found,

Hyunji Moon

Hyunji Moon

Hyunji Moon
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Figure 4.13: Expected condition state for
model F, compared to the average state in the
data, using two sets of estimated parameter
values.

but the damage is not representative for the structure, the inspectors are
less inclined to change the default condition assignment compared to if the
damage had a severity 3 or higher. This phenomenon is likely to be at least
one source of the backward transitions observed in model F.

Next, a model with perfect maintenance is considered. In this case,
objects are allowed to transition back to the initial state. The estimated
transition intensity matrix for this model, referred to as model ‘G’, is

Q =


−13.139 13.139 0 0 0 0

3.155 −4.041 0.886 0 0 0
0.069 0 −0.283 0.214 0 0
0.146 0 0 −0.266 0.120 0
1.326 0 0 0 −1.481 0.155
0.426 0 0 0 0 −0.426

.

The expectation of the condition state as a function of the age of a structure
is shown in Figure 4.14. The extremely high intensities out of state 0 and
from state 1 back to state 0 are not very realistic. Nonetheless, this model
has a log-likelihood of −4799, which is close to the likelihood of model F
with transition intensity matrix Qa.

It is not unusual for the Dutch bridge condition data to result in fast
transitions out of the initial states. This is because the overall bridge condi-
tion is very much like a series system in which the condition of the structure
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Figure 4.14: Expected condition state for
model G, compared to the averag state in the
data.

is the same as the condition of the weakest link or element. As soon as a
single damage is found, the condition of the structure will transition out of
the initial ‘perfect’ state. This is of course due to the automatic assignment
of the most severe damage indicator to the condition of the structure; see
Section 1.3.

4.3 INCLUSION OF INSPECTION VARIABILITY

The probabilities of observing a state Yk = j given that the true state is
i at the k-th observation for each possible pair of states i and j, can be
collected in an error or misclassification matrix:

E =


e00 e01 e02 e03 e04 e05
e10 e11 e12 e13 e14 e15
e20 e21 e22 e23 e24 e25
e30 e31 e32 e33 e34 e35
e40 e41 e42 e43 e44 e45
e50 e51 e52 e53 e54 e55

, (4.2)

where eij = Pr{Yk = j |Xk = i}, therefore 0 ≤ eij ≤ 1 for all i and j, and∑
j eij = 1. Note that eii is actually the probability of correctly identifying

state i as the current condition. Only eij for i 6= j represents a true misclas-
sification. It is assumed here that the probabilities of misclassification do
not change over time. Also, the error matrix is the same for all inspections,
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therefore no distinction is made between different inspectors, weather con-
dition at the time of the inspection, or any other factor which may influence
the judgment of the inspector. As with the transition intensity matrix, it
is possible to ‘design’ the model by selecting a particular structure for the
misclassification matrix. For example, if the inspectors are assumed to be
wrong by only one state, then the misclassification matrix is chosen to have
the form

E =


e00 e01 0 0 0 0
e10 e11 e12 0 0 0
0 e21 e22 e23 0 0
0 0 e32 e33 e34 0
0 0 0 e43 e44 e45
0 0 0 0 e54 e55

. (4.3)

Once the structure of the misclassification matrix has been selected, there
are two options for quantifying the error probabilities: either they are
assessed by expert judgment or their most likely values are estimated to-
gether with the transition intensities of the underlying Markov deteriora-
tion process. Both options are discussed here, starting with the latter. If
there are n states, the error matrix (4.3) requires 2(n − 1) parameters to
be estimated and the error matrix (4.2) adds n(n − 1) parameters to the
maximum likelihood estimation procedure. For the Dutch bridge condi-
tions there are six states, which means that respectively ten and thirty
probabilities would have to be estimated. As this significantly increases
the number of parameters to be estimated in the model and therefore also
the computational effort, this is not an attractive approach. An alterna-
tive approach is to select a finite and discrete probability distribution for
each row of the error matrix E. As an example, the binomial probability
distribution, given by

eij =
(
n− 1
j

)
φj(1− φ)n−j−1, (4.4)

where j = 0, 1, . . . , n − 1 and 0 ≤ φ ≤ 1. The expectation for the to be
observed state j, given the true state i, is (n−1)φ, where φ is the parameter
for the probability distribution in each row i. This approach requires only
one parameter for each row (i.e., six parameters for the Dutch condition
data), but allows for less flexibility because the shape of the binomial can
not take on any arbitrary form. The result for the misclassification matrix
Equation (4.2) using the binomial distribution for each row, is shown in
Figure 4.15.

The expectation of the observation process Y (t), t ≥ 0 is calculated in a
similar way as the expectation of the true states X(t):
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Figure 4.15: Expected condition state as a
function of age for the hidden Markov model
fitted to the overall bridge condition data.

EY (t) =
∑
j

j
∑
i

Pr{Y (t) = j |X(t) = i}Pr{X(t) = i}.

The result in Figure 4.15 looks similar to those in Figure 4.13. Due to the
variability in the inspections, the expected condition state may start in a
state other than state 0. The estimated error matrix is

E =


0.19 0.37 0.30 0.12 0.02 0.00
0.13 0.32 0.33 0.17 0.04 0.01
0.04 0.19 0.33 0.29 0.13 0.02
0.03 0.15 0.31 0.32 0.16 0.03
0.15 0.35 0.32 0.14 0.03 0.01
0.04 0.19 0.33 0.29 0.13 0.02


The second option for quantifying the probabilities of misclassification,
is to use expert judgment. In Sztul (2006) an informal expert judgment
approach was applied. For the full error matrix Equation (4.2), two prob-
ability distributions were chosen with a fixed mean: the binomial and the
maximum entropy distributions. The basic assumption was that the expert
is expected to correctly identify the true state, therefore the mean of each
row distribution was set to the true state of that row. For the binomial
distribution, this results in an error matrix
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E =


1.00 0.00 0.00 0.00 0.00 0.00
0.33 0.41 0.20 0.05 0.01 0.00
0.08 0.26 0.34 0.23 0.08 0.01
0.01 0.08 0.23 0.34 0.26 0.08
0.00 0.01 0.05 0.20 0.41 0.33
0.00 0.00 0.00 0.00 0.00 1.00


and for the maximum entropy distribution this results in

E =


1.00 0.00 0.00 0.00 0.00 0.00
0.48 0.25 0.13 0.07 0.04 0.03
0.25 0.21 0.17 0.15 0.12 0.10
0.10 0.12 0.15 0.17 0.21 0.25
0.03 0.04 0.07 0.13 0.25 0.48
0.00 0.00 0.00 0.00 0.00 1.00

.

The maximum entropy distribution is a discrete probability distribution
which adds the least information (or which has maximum entropy) with a
given mean; see Jaynes (1957). It is less ‘informative’ than the binomial
distribution with given mean. The purpose of using the maximum entropy
distribution is to add as little extra information as possible in order to
obtain a result which is not too ‘colored’ by the choice of the error distrib-
ution. Note that for both approaches, the first and last state are perfectly
observable by the inspector. Another noticable effect of this approach is
that the inspectors would tend to underestimate the condition in the initial
true states (i.e., states 1 and 2), whereas they would tend to overestimate
the condition in later states (i.e., states 3 and 4). From practical experi-
ence in the Netherlands, this should be exactly the opposite in practice.
See Sztul (2006) for the results of these two approaches.

4.4 ANALYSIS OF COVARIATE INFLUENCE

In Section 3.2.3, a short introduction to covariate analysis was given. The
purpose of covariate analysis is to determine if a certain grouping of struc-
tures, according to various characteristics, would result in significantly dif-
ferent transition intensities. If this is the case, then the decision maker
may choose to treat these groups separately in the maintenance model. In
this section, a covariate analysis will be performed on the overall condition
data from bridges in the Netherlands.

First, model A is considered with three covariates: whether a bridge is
located in or over the motorway, whether it is designated as a bridge or
viaduct, and whether the structure is located in a province with a high or
low population intensity. In the Netherlands, a ‘bridge’ is generally defined
as a structure over water and a ‘viaduct’ as a structure which connects
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any two points in order to cross over an obstruction like, for example, a
motorway. The log-linear model is then given by

λ = exp{β0 + β1X1 + β2X2 + β3X3},

where

X1 =
{

0, if located in the motorway, and
1, if located over the motorway.

X2 =
{

0, if designated as a concrete viaduct, and
1, if designated as a concrete bridge.

X3 =
{

0, if located in a more densily populated province, and
1, if located in a lesser populated province.

The null-hypothesis for each covariate is that it does not significantly in-
fluence the model outcome; that is H0 : βi = 0. This hypothesis should be
rejected if the coefficient βi is significantly different from zero. The results
for model A are collected in Table 4.6. The last column in the table shows
if the null-hypothesis is rejected or not. It is only rejected for β3 (even at
the 1% significance level), therefore this covariate (or independent variable)
is significant. The other two covariates may influence the result as well,
but from a statistical point of view this can not be shown with certainty.
The null-hypothesis may also be rejected for coefficient β1 if considering
only a 10% significance level, but this level is rarely used.

i β̂i SEβ̂i p-value reject

0 −4.2470 0.0291 n/a n/a
1 0.0584 0.0388 0.07 no
2 −0.0144 0.0475 0.38 no
3 0.1529 0.0366 0.00 yes

Table 4.6: Estimated coefficients and their
standard error and corresponding p-value for
the covariates in model A.

The base transition intensity is determined by the intercept β0. The base
transition intensity per month is exp{−4.2470} = 0.0143 or approximately
0.17 per year. If the structure is located in a more densily populated area
(i.e., X3 = 1) and does not possess the two other properties (i.e., X1 =
X2 = 0), then this base intensity is multiplied with a factor exp{0.1529} =
1.1652 per month and the annual transition intensity would be 0.20.

As mentioned in Chapter 3, the maximum likelihood estimator is as-
ymptotically normal and in Section 3.2.3 it was mentioned that Wald’s
test essentially rejects the hypothesis that β̂i = 0 if zero is not within the
(1−α)% bounds. In Figure 4.16 it can be clearly observed how this results
in the hypothesis β̂3 = 0 being rejected, whereas the others are not.
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Figure 4.16: Asymptotic density of the
coefficients for the explanatory variables in
model A.

SUMMARY

The primary research goal was to see if Markov processes could be used
to model deterioration of structures in the Netherlands using the condition
data which is available and to determine how this could best be done.
This chapter describes the results of the maximum likelihood estimation
procedure introduced in the previous chapter.

The properties of the various data sets and how these were obtained
from the database, is the topic of Section 4.1. Three data sets have been
analysed: overall bridge condition, condition of superstructures and of
kerbs. These data sets were extracted from the relational database used
in the Netherlands for the registration of inspection results. The database
was not designed with a statistical analysis in mind, therefore the extrac-
tion of the data and conversion into a suitable format for analysis requires
special care and a great deal of time.

For the models which allow only for deterioration (i.e., transitions to
worse states), the quality of the fit onto the data increases as the number of
parameters increases. Age-dependent or inhomogeneous processes therefore
tend to fit better due to the fact that they are more flexible to adapt to the
data and not necessarily because the data is age-dependent by nature. From
a practical point of view, model C, which has state-dependent transition
intensities (i.e., they may be different for each state), is the most appealing
model, even if others have a higher likelihood of generating the given data.
Optionally, model D may also be used. It allows for an overall change in
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the transition intensities as a function of the structure’s age and requires
only slightly more calculations to be made. However, the results indicate
that this change over time is not very strong, i.e. the intensities are close
to constant throughout a structure’s life.

If the possibility of backward transitions is included in the deterioration
process, to account for inspection variability or maintenance activities, the
general trend is that structures are more likely to move towards a worse
state in the initial states 0, 1 and 2, but the reverse is observed for states
3, 4 and 5.

The inclusion of inspection variability, by use of hidden Markov mod-
els, has been deemed not to be useful for application in the Netherlands.
The probabilities of misclassification must be estimated from the data or
determined by expert judgment. Either way, by definition of visual inspec-
tions, the actual process can never be observed and therefore this process
is completely determined by the subjective choice for the misclassification
probabilities. For the Dutch bridge condition data, both the subjective
estimation approach, and the data-based estimation, did not lead to sat-
isfactory results. From a decision maker’s point of view, the subjective
estimation approach is most likely to be preferred, as the data-based esti-
mation may not result in a realistic misclassification structure. Also, the
data-based estimation introduces many more parameters to be estimated,
which may pose a problem if the amount of data is insufficient.

Finally, a covariate analysis was performed to determine the significance
of the influence of independent variables. These independent variables
describe if a structure possesses a certain characteristic or not. In this
analysis, three independent variables were considered: whether a bridge is
located within the motorway or over it, whether the structure is designated
to be a bridge or a viaduct and if the structure is located in a province with
a relatively high population density. Only the latter has a statistically
significant influence, therefore separate maintenance policies may be used
for structures in different locations throughout the country.
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5
Optimal maintenance decisions

Once the deterioration model, using a finite-state Markov process, has been
chosen and fitted to the available data, it can be used to make a decision
about how often a structure should be inspected and which type of main-
tenance should be performed at what time. This chapter therefore deals
with the decision model as discussed in Chapter 1 and shown in Figure 1.1.

For finite-state Markov processes, there are two decision models which
may be used: a Markov decision process or a condition-based maintenance
model. Markov decision processes are most commonly applied as they are
popular in general (Dekker, 1996). A short introduction to the theory of
Markov decision processes is given in Section 5.1. The condition-based
maintenance model is presented in Section 5.2 which is largely based on
Kallen and van Noortwĳk (2006a). A comparison between both models
is given, together with a discussion on the application of the condition-
based maintenance model in the Netherlands, in the summary at the end
of this chapter. The model presented here only considers the economics
of inspections and maintenance. In practice, thisis just one, albeit a very
important one, of many aspects to consider when deciding on a maintenance
policy.

5.1 MARKOV DECISION PROCESSES

In order to be able to make decisions about an optimal policy for mainte-
nance actions, a finite set of actions A and costs C(i, a) have to be intro-
duced, which are incurred when the process is in state i and action a ∈ A
is taken. The costs are assumed to be bounded and a policy is defined to
be any rule for choosing actions. When the process is currently in state i
and an action a is taken, the process moves into state j with probability

pij(a) = Pr{X(n+ 1) = j |X(n) = i, an = a}.

This transition probability again does not depend on the state history. If a
stationary policy is selected, then this process is called a Markov Decision
Process (MDP). A stationary policy arises when the decision for an action
only depends on the current state of the process and not on the time at
which the action is performed.
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Now that the state of the structure over time with or without perform-
ing maintenance actions can be modeled, the optimization of inspection
and maintenance policies using this process can be performed. For exam-
ple, when the system is in state i, the expected discounted costs over an
unbounded horizon are given by the recurrent relation

Vα(i) = C(i, a) + α
N∑
j=1
pij(a)Vα(j), (5.1)

where α is the discount factor for one year and Vα is the value function
using α. This discount factor is defined as α = (1 + r/100)−1 with r the
yearly discount percentage. Starting from state i, Vα(i) gives us the cost of
performing an action a given by C(i, a) and adds the expected discounted
costs of moving into another state one year later with probability pij(a).
The discounted costs over an unbounded horizon associated with a start in
state j are given by Vα(j), therefore Equation (5.1) is a recursive equation.
The choice for the action a is determined by the maintenance policy and
also includes no repair.

A cost optimal decision can now be found by minimizing Equation (5.1)
with respect to the action a. A classic approach is to use a policy improve-
ment algorithm, which consists of successively adjusting the policy until
no further improvement can be made. Under some minor assumptions,
this optimization problem can also be formulated as a linear programming
problem, which can then be solved using the simplex algorithm. See Ross
(1970, Chapter 6) for the theory of Markov decision processes.

A Markov decision process and the linear programming formulation was
used in the Arizona pavement management system, see Golabi et al. (1982)
and Golabi (1983), and in Pontis, see Golabi and Shepard (1997), amongst
others. More references are given in the review by Frangopol et al. (2004).

5.2 CONDITION-BASED INSPECTION AND MAINTENANCE MODEL

The Markov decision processes discussed in the previous section, are es-
sentially condition-based decision models as the decisions depend on the
current state of the process. The model which will be discussed in this sec-
tion is commonly referred to simply as the ‘condition-based inspection and
maintenance model’ for stochastic processes, hence the title of this section.

5.2.1 MODEL

As discussed in Chapter 1, each maintenance model can be roughly sepa-
rated into a deterioration model and a decision model. For the application
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r · · · s − 1 marginal states

s · · · m failed states

Figure 5.1: Graphical representation of the
marginal checking model.

of the decision model, the structure of the Markov deterioration process is
defined first.

Deterioration model

For the deterioration model, a sequential Markov process is used. A
new object starts in state 0 and successively degrades through subsequent
states as is shown in Figure 5.1. States r and s are the threshold states
for preventive and corrective maintenance respectively. An object which
has not yet reached state r is functional and if it has reached state r, but
not yet state s, it is called marginal. States s and beyond are failed states.
The term ‘marginal’ was used in the same context by Flehinger (1962) and
indicates that the object is still functional, but is ready for a preventive
repair or replacement.

Decision model

The decision model is based on renewal theory. It is therefore assumed
that preventive and corrective repairs bring the object to an as-good-as-
new state. The time between the service start of an object and its renewal
represents a single life cycle. The renewal reward process R(t) is defined as

R(t) =
N(t)∑
n=1
Yn,

where Yn is the reward earned at the n-th renewal. In the context of main-
tenance, the rewards are the costs of inspection and maintenance actions.
The goal of the decision model is to minimize the long-term expected av-
erage costs per unit of time given by limt→∞ ER(t)/t. According to the
renewal reward theorem,

Hyunji Moon
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lim
t→∞

ER(t)
t

= EC
EI
, (5.2)

where C are the uncertain costs per cycle and I is the uncertain duration
of a cycle; see for example Ross (1970, p.52). The expected average costs
per unit of time over an unbounded horizon are therefore given by the ratio
of the expected total costs incurred during the life cycle over the expected
length of a life cycle. It is also possible to consider discounted costs in order
to account for inflation over longer periods of time. However, for ease of
presentation, discounting is not considered here.

Let τ > 0 denote the fixed duration between inspections, such that kτ
(k = 1, 2, . . .) is the time of the k-th inspection. This is the primary decision
variable. Other decision variables like the threshold state r for preventive
maintenance may be included. Also, the time to the first inspection, as
suggested by Jia and Christer (2002), is a useful decision variable. In this
case, the inspections are performed at times τ1 + (k − 1)τ for k = 1, 2, . . .
and the optimal combination of τ1 and τ , resulting in the lowest expected
average costs per unit of time, are determined.

At each inspection, the object can be in a functional, marginal or failed
state. If the object is found to be in a functional state, no maintenance is
required and only the cost of the inspection is incurred. If it is found to
be in a marginal state, the costs of preventive maintenance are added to
the cost of the inspection. For an object in a failed state, there are two
scenarios: either the failure is immediately noticed at the time of occur-
rence, without the necessity of an inspection, or failure is only detected at
the next planned inspection. In the first case, only the costs of corrective
maintenance are incurred and in the second case, the costs of the inspection
and unavailability have to be included as well.

The costs per cycle are the sum of the costs of all inspections during
the cycle and either a single preventive or a single corrective replacement.
For the first scenario, in which failure is immediately noticed, the expected
cycle costs are

EC =
∞∑
k=1

[
(kcI + cR) Pr{PR in ((k − 1)τ, kτ ]}+ · · ·

+ ((k − 1)cI + cF ) Pr{CR in ((k − 1)τ, kτ ]}
]
, (5.3)

where PR is preventive repair, CR is corrective repair, and cI , cP and cF
are the costs of an inspection, preventive repair and a corrective repair
respectively. The expected cycle length is
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EI =
∞∑
k=1

[
kτ Pr{PR in ((k − 1)τ, kτ ]}+ · · ·

+
kτ∑

n=(k−1)τ+1

nPr{CR in (n− 1, n]}
]
. (5.4)

The summation over n from (k − 1)τ + 1 to kτ reflects the immediate
identification of a failure.

For the second scenario, in which failure is not noticed until the next
inspection, Equations (5.3) and (5.4) become

EC =
∞∑
k=1

[
(kcI + cR) Pr{PR in ((k − 1)τ, kτ ]}+ · · ·

+ (kcI + cF ) Pr{CR in ((k − 1)τ, kτ ]}+ · · ·

+
kτ∑

n=(k−1)τ+1

cU (kτ − n) Pr{failure in (n− 1, n]}
]
, (5.5)

and

EI =
∞∑
k=1

[
kτ Pr{PR in ((k − 1)τ, kτ ]}+ · · ·

+ kτ Pr{CR in ((k − 1)τ, kτ ]}
]
, (5.6)

where cU are the costs of unavailability per unit time. This cost is added
in Equation (5.5) as a penalty for leaving a structure in a failed state. The
costs increase proportionally to the time that the object is left in the failed
state. Without this cost, the cheapest solution would be to not inspect at
all, because the average costs per unit of time will decrease as the cycle
length increases.

5.2.2 PROBABILITIES OF PREVENTIVE AND CORRECTIVE MAINTENANCE

Special case

In this section, the most simple type of Markov process, namely the state-
independent and time-homogeneous Markov process is considered, which
corresponds to model A as defined in Section 4.2.1. In this case, the
waiting times are modeled by identical exponential distributions, that is,
T ∼ Exp(λ) with FT (t) = 1− exp{−λt}. Let Sn =

∑n
i=1 Ti be the time at

which the n-th transition takes place, then the following equivalence holds:
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X(t) ≤ n⇔ Sn ≥ t

In words: if the state of the object is less than or equal to n at time t,
the time required to perform n transitions is greater than or equal to t.
Note that for a component with sequential condition states as depicted
in Figure 5.1, Sn is also the first passage time of state n. Using this
relationship, the probability of preventive repair becomes

Pr{PR in ((k − 1)τ, kτ ]} = Pr{(k − 1)τ < Sr ≤ kτ, Ss > kτ}.

This is the probability that the threshold state r for preventive mainte-
nance is first reached between the previous inspection at time (k− 1)τ and
the current inspection at time kτ , and the threshold state s for correc-
tive maintenance has not been reached before the current inspection. The
analytical solution of this probability is

Pr{(k − 1)τ < Sr ≤ kτ, Ss > kτ} =
s−r−1∑
j=0

(λkτ)j+r

(j + r)!
e−λkτ

[
1− I1− 1

k
(r, j + 1)

]
, (5.7)

where

Ix(a, b) =
∫ x
φ=0

Γ(a+ b)
Γ(a)Γ(b)

φa−1(1− φ)b−1dφ

is the incomplete beta function for 0 ≤ x ≤ 1, a > 0 and b > 0, see for
example Abramowitz and Stegun (1965). The result in Equation (5.7) is
obtained by splitting the probability and using the independence of the
increments Sr and Ss − Sr:

Pr{(k − 1)τ < Sr ≤ kτ, kτ − Sr < Ss − Sr}
= Pr{Sr ≤ kτ, kτ − Sr < Ss − Sr} − · · ·
− Pr{Sr ≤ (k − 1)τ, kτ − Sr < Ss − Sr}.

Denoting the difference of these two probabilities by A− B, each of these
can be calculated as follows:
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A =
∫ kτ
φ=0

∫ ∞
θ=kτ−φ

fSr (φ)fSs−Sr (θ)dθdφ

=
∫ kτ
φ=0
fSr (φ)

[∫ ∞
θ=kτ−φ

fSs−Sr (θ)dθ
]

dφ

=
∫ kτ
φ=0

λrφr−1e−λφ

(r − 1)!

s−r−1∑
j=0

λj(kτ − φ)j

j!
e−λ(kτ−φ)

dφ

=
s−r−1∑
j=0

[
λ(j+r)

(j + r)!
e−λkτ (kτ)j+r−1 × · · ·

×
∫ kτ
φ=0

(j + r)!
(r − 1)!j!

(
1− φ
kτ

)j (
φ

kτ

)r−1
dφ

]
.

With the substitution ϕ = φ
kτ , the beta function integrates out:

A =
s−r−1∑
j=0

[
λ(j+r)

(j + r)!
e−λkτ (kτ)j+r−1kτ

∫ 1

ϕ=0

(j + r)!
(r − 1)!j!

(1− ϕ)jϕr−1dϕ

]

=
s−r−1∑
j=0

(λkτ)j+r

(j + r)!
e−λkτ .

The same calculations can be used to derive the second part:

B =
s−r−1∑
j=0

(λkτ)j+r

(j + r)!
e−λkτI1− 1

k
(r, j + 1).

The difference A−B results in Equation (5.7).
For a corrective repair, the state at the previous inspection was again

less than r, but is greater than or equal to the failure state s at time kτ .
This probability is given by

Pr{CR in ((k − 1)τ, kτ ]} = Pr{Sr > (k − 1)τ, (k − 1)τ < Ss ≤ kτ}

and in this case becomes
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Pr{Sr > (k − 1)τ, (k − 1)τ < Ss ≤ kτ}
= Pr{(k − 1)τ < Sr < Ss ≤ kτ}
= Pr{(k − 1)τ < Sr ≤ kτ} − Pr{(k − 1)τ < Sr ≤ kτ, Ss > kτ}
= Pr{Sr > (k − 1)τ} − Pr{Sr > kτ} − · · ·
− Pr{(k − 1)τ < Sr ≤ kτ, Ss > kτ}

= P (λkτ, r)− P (λ(k − 1)τ, r)− · · ·

−
s−r−1∑
j=0

(λkτ)j+r

(j + r)!
e−λkτ

[
1− I1− 1

k
(r, j + 1)

]
,

where

P (x, a) = 1
Γ(a)

∫ x
t=0
ta−1e−tdt

is the incomplete gamma function, see also Abramowitz and Stegun (1965).

General formulation

The application of the model which was just described, is limited to Markov
processes with successive phases as in Figure 5.1 and with identical expo-
nential waiting times in each state. This is because the probabilities of a
preventive and corrective repair have only been derived for this case. In
this part, these probabilities are derived for any type of Markov process
with successive phases as in Figure 5.1. These general results are obtained
using a matrix notation and allow for state- and time-dependent transition
intensities. If the transition intensities depend on the age of the process,
the process is called instationary.

For any type of finite state Markov process, it is possible to calculate the
transition probability function

Pij(s, t) = Pr{X(t) = j | X(s) = i},

which represents the probability of moving into state j after a duration t,
given that the object was in state i at the beginning of this time period.
The probability of being in state j after time t is simply determined by

pj(t) =
s∑
i=0

Pr{X(t) = j | X(0) = i} · Pr{X(0) = i}.

Using this probability, we can e.g. calculate the probability of not having
reached state j by time t:
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Pr{X(t) < j} =
j−1∑
i=0

Pr{X(t) = i} =
j−1∑
i=0
pi(t).

To calculate the probability of a preventive or corrective repair, the current
state of the deterioration process is used instead of the first passage time as
in the special case described before. The probability of a preventive repair
is the probability that the object was in a functional state at the previous
inspection (i.e., X((k − 1)τ) < r) and in a marginal state at the current
inspection (i.e., r ≤ X(kτ) < s):

Pr{PR in ((k − 1)τ, kτ ]} = Pr{r ≤ X(kτ) < s,X((k − 1)τ) < r}. (5.8)

Similarly, the probability of corrective repair is the probability of the object
being in a failed state at the current inspection when it was still in a
functional state at the previous inspection:

Pr{CR in ((k − 1)τ, kτ ]} = Pr{X(kτ) ≥ s,X((k − 1)τ) < r}. (5.9)

Equation (5.8) can be split up in two parts:

Pr{r ≤ X(kτ) < s,X((k − 1)τ) < r}
= Pr{X(kτ) < s,X((k − 1)τ) < r} − · · ·
− Pr{X(kτ) < r,X((k − 1)τ) < r}.

Denoting this difference as A − B, each probability can be calculated as
follows:

A = Pr{X(kτ) < s,X((k − 1)τ) < r}
= Pr{X(kτ) < s | X((k − 1)τ) < r} Pr{X((k − 1)τ) < r}

=
s−1∑
j=0

Pr{X(kτ) = j | X((k − 1)τ) < r} Pr{X((k − 1)τ) < r}

=
s−1∑
j=0

r−1∑
i=0

Pr{X(kτ) = j | X((k − 1)τ) = i} Pr{X((k − 1)τ) = i}

=
s−1∑
j=0

r−1∑
i=0
Pij((k − 1)τ, kτ)pi((k − 1)τ)

and similarly
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B = Pr{X(kτ) < r,X((k − 1)τ) < r}
= Pr{X(kτ) < r | X((k − 1)τ) < r} · Pr{X((k − 1)τ) < r}

=
r−1∑
j=0

Pr{X(kτ) = j | X((k − 1)τ) < r} · Pr{X((k − 1)τ) < r}

=
r−1∑
j=0

r−1∑
i=0
Pij((k − 1)τ, kτ)pi((k − 1)τ).

Using these results, Equation (5.8) simplifies to

A−B =
s−1∑
j=r

r−1∑
i=0
Pij((k − 1)τ, kτ)pi((k − 1)τ). (5.10)

Using the same approach and the knowledge that s is the final state, Equa-
tion (5.9) can be simplified as follows:

Pr{X(kτ) ≥ s,X((k − 1)τ) < r}
= Pr{X(kτ) = s | X((k − 1)τ) < r} · Pr{X((k − 1)τ) < r}

=
r−1∑
i=0

Pr{X(kτ) = s | X((k − 1)τ) = i} · Pr{X((k − 1)τ) = i}

=
r−1∑
i=0
Pis((k − 1)τ, kτ)pi((k − 1)τ). (5.11)

Note that results (5.10) and (5.11) are valid for all types of Markov process-
es. For example, if we are using stationary Markov processes with time-
independent transition rates, the transition functions Pij((k−1)τ, τ) reduce
to Pij(τ). These algorithmic formulations can therefore also be used to
obtain the same results as are obtained using the analytical formulations
in previous part.

The probability of a failure in the interval (n− 1, n] for n starting at the
first year after the previous inspection, being (k − 1)τ + 1, to the time of
the current inspection, being kτ , is given by the following:

Hyunji Moon
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Pr{X((k − 1)τ) < r,X(n− 1) < s,X(n) = s}
= Pr{X(n− 1) < s,X(n) = s |X((k − 1)τ) < r} × · · ·
× Pr{X((k − 1)τ) < r}

=
r−1∑
i=0

Pr{X(n− 1) < s,X(n) = s |X((k − 1)τ) = i} × · · ·

× Pr{X((k − 1)τ) = i}

=
r−1∑
i=0

(
Pis(n)− Pis(n− 1)

)
pi((k − 1)τ).

The probability of failure during each year in the interval ((k − 1)τ, kτ ]
is therefore conditional on the probability that no preventive repair was
performed at the start of this interval.

5.2.3 APPLICATION TO DUTCH BRIDGE CONDITION DATA

Two hypothetical scenarios are considered with fictitious costs presented in
Table Table 5.1.

Scenario A Scenario B

Failure detection immediate by inspection
Inspection (cI) ¤1000 ¤1000
Prev. repair (cP ) ¤10000 ¤10000
Corr. repair (cF ) ¤40000 ¤10000
Unavailability (cU ) N/A ¤2000

Table 5.1: Costs for two hypothetical ex-
amples.

Scenario A considers the case in which a failure is immediately detected
and repaired without the need for an inspection. The costs for a corrective
repair are four times the costs of a preventive repair, therefore it will be
economically interesting to repair before failure occurs. Scenario B consid-
ers the other case, in which failure is not detected until the next inspection
and a cost is incurred for each unit of time that the superstructure is in a
failed state. For both scenarios, the threshold for preventive repair is state
r = 3 and the failed state is state s = 5. The unit time considered in both
scenarios is one year.

Scenario B suits the case of superstructures very well, because state 5 is
considered to be a condition failure and not an actual physical failure and
therefore an inspection is required to assess the state of the superstructure.
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Figure 5.2: Expected average costs per
year for superstructure maintenance as a func-
tion of the inspection interval τ and using
model A.

For the bridge superstructures, the results for both scenarios are shown in
Figure 5.2.

Since in scenario A corrective repair is expensive compared to preventive
repair, the inspection interval with lowest expected average costs per year
is shorter than the same optimal value for scenario B: 6 years compared
to 13 years. With a mean time to preventive repair of r/λ ≈ 16.7 years.
This implies that about 3 inspections are performed for scenario A and
a preventive repair is done after about 18 years. For scenario B, only
about 2 inspections are performed and a repair is performed after about
26 years. As τ → ∞, the costs in scenario A converge to the costs of
a corrective repair, ¤40000, divided by the expected lifetime of 28 years,
which is approximately ¤1430. The costs in scenario B do not converge,
but increase every year due to the cost of unavailability.

The cost model presented in this section is easier to implement than
the classic policy improvement algorithm, which is used for Markov de-
cision processes. Instead of presenting the decision maker with a single
optimal value, this approach results in a clear graphical presentation as is
demonstrated by Figure 5.2. Also, the models can be adjusted for various
situations. For example, Equations (5.3) to (5.6) can be adjusted to include
discounting, see e.g. van Noortwĳk et al. (1997), or to include the time of
the first inspection as an extra decision variable. The latter extension has
been demonstrated before by Jia and Christer (2002) and is useful when
the thresholds for preventive and corrective maintenance are very close to

Hyunji Moon



Section 5.2 ·Condition-based inspection and maintenance model

99

each other. When the difference in costs for preventive or corrective re-
placement is large, this would result in a very short inspection interval,
which would be unnecessary when the structure has just been taken into
service. The model will determine the optimal combination of the time of
first inspection and the subsequent periodic inspection interval.

Another extension is to include the threshold state for preventive main-
tenance as a decision variable. The optimal inspection intervals and the
corresponding expected average costs per year for r ranging from state 1
to 4, are shown in Table 5.2.

Threshold Example A Example B
r τ EC/EI τ EC/EI

[yr] [¤/yr] [yr] [¤/yr]

1 14 985 21 672
2 10 887 19 641
3 6 855 13 602
4 4 1026 9 592

Table 5.2: Optimal inspection intervals for
different preventive maintenance threshold
levels.

For example A, r = 3 is optimal and for example B r = 4 is optimal.
In example B, the cost of a corrective repair is the same as the cost of a
preventive repair, therefore the model minimizes the expected number of
preventive renewals. This is achieved by placing the threshold for preven-
tive repair as close as possible to the threshold for corrective repair, which
is state 5 in this case. In general, the optimal length of the inspection in-
terval τ becomes smaller as the threshold is moved closer to the threshold
of a corrective renewal. As the margin for preventive maintenance becomes
smaller, more frequent inspections are required to increase the probability
of performing a preventive repair instead of a corrective repair. If r = 4
is chosen in example A, the risk of missing the opportunity for preventive
repair becomes much greater and this results in a higher expectation for
the average costs per year.

In the previous chapter, it was observed that a state-dependent model,
namely model C, fits better to the bridge condition data compared to the
state-independent model A, which is applied above. For superstructures,
the estimated parameters for model C are listed in Table 4.5. Using the
general formulation of the condition-based inspection model, the expected
average costs per year are calculated using model C for superstructures.
The result for both scenarios as defined in Table 5.1, is shown in Figure 5.3.

The optimal inspection interval for scenario A is 15 years with ¤654 per
year and 23 years for scenario B with ¤498 per year. Because the mean
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Figure 5.3: Expected average costs per
year for superstructure maintenance as a func-
tion of the inspection interval τ and using
model C.

times to reach the threshold states are longer in comparison with those
given by model A, the times between inspections are also longer. However,
the minima of both results are much less defined. For scenario A, the
expected costs using an inspection interval of 10 or 20 years are only slightly
more compared to the expected average costs per year for the optimal
interval length of 15 years. This is a result of the much larger uncertainty
in the amount of time it takes to reach the treshold states. In this case,
the decision maker must make a decision with care. Using other criteria,
like past experience or just common sense, he may decide for a shorter or
longer period of time between inspections than the optimum given by the
model. To aid in his decision, he may also calculate the variance of the
results in Figures 5.2 and 5.3, which would give an indication about the
confidence bounds around the mean. Explicit formulas for this purpose are
given by van Noortwĳk (2003) for the condition-based inspection model
which includes discounting. Experience with the variance of the average
costs per time unit, show that a choice for a shorter inspection interval
generally has a smaller variance and is therefore less risky. So the decision
maker might choose an inspection interval of 10 years for scenario A and
about 20 years for scenario B.
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5.3 SURVIVAL PROBABILITY

If no information on the cost of different maintenance actions is available,
then a more simplistic approach to inspection planning could be used. A
decision maker often needs to make a decision about whether or not a
structure needs an earlier inspection than planned. For example, he may
have a structure which is quite old, but has been reported to be in a good
state. Not considering any life-cycle costs, he may want to assess the risk
of a ‘failure’ before the next periodic inspection. For this purpose, the
survival probability curves may be computed and reviewed by the decision
maker. The selection of an inspection interval based on an acceptable risk
level, is commonly used in risk-based inspection methodologies; see Kallen
and van Noortwĳk (2005a) for an introduction to risk-based inspection in
the process and refining industry.

If T is the random variable representing the uncertain time to failure,
the survival probability of a structure, given that it has survived up to age
s, is defined as Pr{T > t |T > s}. In other words, it is the probability of
surviving up to age t conditional on having survived up to age s, where
0 ≤ s ≤ t. A simple derivation shows that

Pr{T > t |T > s} = Pr{T > t}
Pr{T > s}

= S(t)
S(s)
,

where S(t) = 1 − F (t) = Pr{T > t} is the common notation for the
survival probability function. For the finite-state Markov processes used
here, the probability of failure is defined as the probability of reaching
the final absorbing state, namely state 5. The ‘survival’ probability at
age t is the probability of being in any state other than state 5 at age t:
S(t) ≡ Pr{X(t) 6= s}. For the sequential Markov process in Figure 5.1,
this probability is

S(t) = Pr{X(t) < 5} =
4∑
i=0

Pr{X(t) = i} = p′0 exp{Rt}1,

where the matrix notation uses the fact that this probability distribution
is a phase-type distribution as introduced in Section 2.1.3.

As an example, the survival probability curve of superstructures in state
0 at ages 0, 25, 50, 75, and 100, are calculated and shown in Figure 5.4.
The survival curve for superstructures at age 0 is simply the random time
required for a superstructure to reach state 5 from state 0, which has a mean
of about 43 years as listed in Table 4.5. It is obvious that as superstructures
reach higher ages, their remaining life shortens. However, the remaining
life does not converge to zero, which is clearly observed in Table 5.3. This
result is not entirely surprising, because it takes a minimum amount of
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Figure 5.4: Survival probability curves for
superstructures in the initial state 0 at various
ages.

age mean remaining time
[yr] [yr]

0 42.7
25 24.7
50 19.5
75 17.8
100 17.1

Table 5.3: Mean time for superstructures
to reach state 5 from state 0 at various ages.

time for a structure (or any object), which is in a perfect state at an old
age, to reach the final state.

SUMMARY

Although both a Markov decision process and the model presented in Sec-
tion 5.2 are condition-based decision models, they are different in many as-
pects. The most fundamental difference between them, is that the Markov
decision processes are used to optimize the maintenance policy given a
fixed inspection interval, whereas the condition-based model presented in
Section 5.2 is used to optimize the length of the inspection interval given
a fixed policy. The maintenance policy of the latter model is to perform
a preventive repair or replacement if the structure is in a marginal state
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and to perform a corrective repair or replacement if it is in a failed state.
The length of time between inspections for the Markov decision processes
described in Section 5.1 is implicitly included in the transition probability
function Pij(a). If the policy of a Markov decision process is chosen to
emulate the marginal checking policy of the model in Section 5.2, the time
between inspections may be optimized by calculating the value function
Vα(i) using different time periods for Pij(a).

A successful application of the condition-based maintenance model pre-
sented in this chapter depends on a number of aspects. First of all, there
must be some relationship between the state in which the structure or
component is and how much it costs to bring this object back to an as-
good-as-new state. This is currently not possible for bridge condition data
in the Netherlands, as there is no direct relationship between the condi-
tion state and the size and type of damages. This is due to the fact that
discrete condition states are used for quantifying visual assessments of the
overall condition of an object and not for sizing individual damages. The
quote on page 23 formulates this rather well. This feature has significant
consequences as it implies that practically all data in this form can not be
used for an exact estimation of maintenance costs.

Another aspect which affects the applicability of a maintenance model,
is the quality of the data. The aspect of data quality was discussed at the
beginning of Chapter 4 and it is the registration of maintenance activities
which is especially important in the context of maintenance optimization. If
the data is of sufficient quality and the costs of maintenance are quantified,
the condition-based model presented in Section 5.2 is easy to implement
and easy to use. The implementation is straightforward compared to that
of a Markov decision process and the results can be presented to decision
makers in a simple plot like those in Figures 5.2 and 5.3.

Finally, it was shown in Section 5.3 how the survival curve of an object
may be used to assess the risk of a ‘failure’ before the next inspection. The
survival probability is calculated based on the current age and state of the
object. This approach does not consider the costs of maintenance over the
life-cycle of the object, but merely serves as an additional decision tool for
the decision maker.
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6
Conclusions and recommendations

In short, the research goal was to implement and test a suitable model for
modeling the rate of deterioration for bridges in the Netherlands. There are
over 3000 concrete bridges in the Netherlands, which are managed by the
Civil Engineering Division of the Ministry of Transport, Public Works and
Water Management. It is their duty to ensure the safety of the users and
the availability of the road network by inspecting and maintaining these
bridges. Due to an aging bridge stock and increasing demands on account-
ability, a structured approach to the planning and scheduling of mainte-
nance activities is required. The primary uncertainty in the optimization
of maintenance activities is the uncertainty in the rate of deterioration of
structures. The approach presented in this research is aimed at the appli-
cation of a model which uses the available condition data to quantify this
uncertainty and therefore to aid in the decision making process.

SPECIFICATION

The approach advocated in this thesis, is of statistical nature and the first
step in any statistical analysis is the specification of a model as a gener-
ator of the given data. As seen in Section 1.2.2, it is also possible to use
a physics-based approach where the deterioration is explicitly modeled by
a ‘physical’ model. The reason for choosing a statistical approach is the
availability of a large data set with bridge condition states obtained by
inspections over a period of almost twenty years. Also, physical measure-
ments are infeasible at such a large scale.

To represent the uncertain development of the state of a structure, or
one of its components over time, a finite-state Markov process (also known
as a ‘Markov chain’) is used. This choice is quite common in civil engi-
neering applications and also in medical studies, where the condition of a
structure or patient is categorized according to a discrete and finite condi-
tion scale. For infrastructure in the Netherlands, a scale with seven states
given in Table 1.1 is used. The use of a discrete condition scale is due to
the visual nature of the inspections. The large number of structures in the
network makes it too costly to perform actual damage size measurements
on a regular basis. In the case of medical studies, there is often no device
to measure the actual extent of a disease, therefore an expert assessment
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is made using the information which is available. The reliability of a struc-
ture is traditionally used as a measure of the quality of a structure. This
reliability depends on the ability of the structure to carry the loads that are
placed upon it, which makes it a typical stress-strength model. There is no
device to measure the reliability of a structure or component, therefore it
must be calculated using the information available to the decision maker.

A Markov process is a stochastic process for which the Markov property
holds. This property can be roughly defined as the property where the
future state of the process is independent of the past given the present
state. The assumption is therefore that all information from the past is
contained in the current state of the process. In the past, there has been
some debate within the bridge management community about the validity
of this assumption. In statistical analysis, and especially in the context
of maximum likelihood estimation, there is no ‘true’ model. The quality
of a model is primarily determined by the likelihood of such a model gen-
erating the given data. Because all assumptions are made by choice, the
decision maker may also use other subjective criteria to select a model for
his purposes.

In Section 2.4, the testing of the Markov assumption is shortly addressed.
For the available condition data in the Netherlands, obtained by periodic
inspections, it is not practically feasible to test the validity of the Markov
property in the data. The discrete nature of the data and the fact that such
a large collection of data is available, weighs more heavily in the choice for a
Markov process than the question of whether or not the Markov assumption
is valid.

ESTIMATION

The Markov model used in this research is a parametric model, which means
that there are a finite number of parameters. The Markov process itself
is shaped by its transition structure, which is defined by the transition
probability matrix or transition intensity matrix. Because a continuous-
time Markov process is applied to the Dutch bridge condition data, a large
part of the modeling aspect is the estimation of the transition intensities
(or ‘rates’).

Chapter 3 reviews various aspects of the maximum likelihood estimation
approach, which is used to fit the continuous-time Markov process to the
panel data obtained by periodic visual inspections. These aspects include
the consideration of uncertainty and variability in the inspection results
and the testing of the influence of independent variables on the outcome.
The maximum likelihood approach presented in Chapter 3 is different from
previous approaches which are found in the literature and most of which
are reviewed in Section 2.3. Contrary to many of the reviewed estimation
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procedures, the maximum likelihood method is particularly well suited for
panel data, because it does not depend on the exact times of transitions,
nor on the exact duration of stay in any particular state. It only uses the
likelihood of observing a structure in a particular state at a particular age,
which is exactly the information available to the decision maker.

APPLICATION

Since 1985, a database to record inspections and maintenance activities
on infrastructure in the Netherlands has been in use. In 2004, this data-
base contained over 6000 observations of concrete bridge state conditions,
which can be used to estimate the model parameters. The database was
not specifically designed for use in a statistical analysis, therefore the data
had to be prepared first. The process of preparing the data for appli-
cation in a Markov model, consisted of filtering out faulty or incomplete
data entries and converting the data set to a suitable format for the es-
timation procedure. Details on the data and the extraction process are
given in Section 4.1. Experience with the Dutch database shows that the
extraction process requires a great deal of attention and care in order to
ensure the quality of the data set. Although this particular database is
designed and used only by the Ministry of Transport, Public Works and
Water Management in the Netherlands, it is very likely that databases in
other countries or with a different application (like e.g., in sewer system
and pavement management) will also require a significant effort in order to
create a usable data set.

A Markov process is shaped by the transition probability or transition
intensity matrix, therefore the layout of the transition structure is another
decision for the modeler to make. The transition structure may be chosen
such that only deterioration is possible (resulting in a ‘progressive’ process)
or such that transitions towards better condition states are also allowed for.
A progressive or sequential model should be used to model deterioration,
since bridge conditions can not physically improve without intervention in
the form of maintenance. Because of their rare application, self-healing
materials are not considered here.

Age-dependent transition intensities

Existing Markov models in bridge management systems do not incorporate
time-dependent transition probabilities or intensities. The approach pre-
sented here allows age-dependence to be included in a fairly straightforward
manner. Unlike with semi-Markov processes, the dependence is not on the
length of stay in a condition state, but rather on the age of the structure
or the component. This allows the transition intensities to increase as the
deteriorating object ages. It does not increase the probability of a pending
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transition if the duration of stay in a condition state increases. As men-
tioned in Section 2.5, the latter feature results in a very complicated model
which is not analytically tractable.

The addition of age-dependence results in a significantly better fit to
the bridge condition data; see Section 4.2.1. However, this should not
be considered as proof that bridge deterioration is age-dependent or non-
homogeneous. It is only proof that the extra parameter helps to make the
model fit closer to the observations. As for testing the Markov property, the
condition data does not have sufficient detail for testing time-homogeneity.

Inspection variability

The inclusion of inspection variability is a topic which has received consid-
erable interest, especially in combination with Markov decision processes.
These approaches are referred to as ‘partially observable’ or ‘latent’ Markov
decision processes. In the area of speech recognition, a Markov process with
observational errors is called a hidden Markov model. The same terminol-
ogy is used here, as the application of inspection variability is not combined
with Markov decision processes. The primary goal in this research is to
test if hidden Markov models are a useful extension to the regular Markov
processes. The most challenging aspect of this model is to estimate the
probability of misclassification. This is the probability of observing one of
the condition states given a true underlying state. It may be estimated
using the data itself or it may be determined by expert judgment.

In the end, hidden Markov models are not deemed to be suitable for
application in bridge deterioration modeling. This is primarily due to the
fact that, by the definition of visual inspections, the true state can never be
measured and therefore not be used to check the quality of the estimated
parameters. The course of the true state is completely determined by the
choice for the misclassification probabilities and this choice is subjective.

Influence of independent variables

Although no two bridges will be exactly alike, most concrete bridges in the
Netherlands can be considered to be similar in terms of design, construction
material and usage. Nonetheless, it is possible to group bridges according to
various characteristics. For example, bridges constructed using box girders
may be considered separately from bridges with a beam supported road
surface. It is also possible to group bridges according to their geographical
location. Since the statistical analysis depends on the availability of a
sufficient amount of data, it is important that the resulting groups do not
contain a too small number of structures. In order to decide whether or
not to consider certain groups of bridges, a statistical test of significance
can be performed to determine if the groups behave significantly different.
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If not, then it is not necessary for the decision maker to treat these groups
differently in the maintenance model.

The maximum likelihood method is well suited to perform a so-called
‘covariate analysis’, where the influence of the independent variables (i.e.,
the variables which describe if a structure possesses a certain characteristic
or not) on the outcome can be measured. From the Dutch database, three
possible groups where identified in Section 4.4: 1) whether or not a bridge
is located in the motorway, 2) whether the structure is identified as a
‘bridge’ or a ‘viaduct’, and 3) if the structure is located in a province
with a relatively high population number. Only the last group behaves
significantly different from structures located in provinces with a lower
population number. When determining a maintenance policy, the decision
maker may therefore include the province in which the structure is located
as an additional variable.

Maintenance and inspection decisions

Chapter 5 is completely devoted to decision models which may be applied
when using a finite-state Markov process as a deterioration model. The
classical approach to optimizing maintenance decisions is to use a Markov
decision process. An easy alternative condition-based maintenance model
is presented in Section 5.2. This model balances the costs of inspections
and preventive maintenance against the costs of corrective maintenance to
determine the optimal time between inspections. It also allows the decision
maker to determine the optimal threshold for preventive maintenance. Two
scenarios have been evaluated in a case study using the deterioration model
obtained in Chapter 4. In the first scenario, the bridge is found to be in an
unacceptable state without the necessity of performing an inspection. The
second scenario considers a more realistic situation where an inspection
is required to observe if the structure has reached an unacceptable state
or not. A penalty is applied for every year that a structure is left in an
unacceptable state.

Because these decision models minimize the costs of inspections and
maintenance over the lifetime of a structure, it is necessary to have repre-
sentative cost data. Since the condition states used in bridge inspections do
not represent a measure of the extent of damage, it is difficult to determine
the cost of repairing structures in different states.

IMPLEMENTATION

In this project, special attention has been put into the aspects of the im-
plementation of the maximum likelihood estimation and the maintenance
model. Due to the large amount of state observations, it is not necessary
to estimate the model parameters anew after every inspection. The model
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is sufficiently robust such that significant changes in the parameter values
are not to be expected. Nonetheless, a model for which the computations
take too much time is not very appealing to the demanding user of to-
day. Therefore, Chapter 7 deals with various techniques to calculate the
transition probability function. This function gives the probability of tran-
sitioning between any two states during a specified period of time and if
the transition intensities are age-dependent, this function will also depend
on what age this period starts.

Out of all the reviewed approaches to calculating the transition prob-
ability function, uniformization is the most appealing. This particular
approach enables an algorithmic calculation in which both the transition
probability function and its derivatives may be calculated simultaneously.
Also, other than scalar operations, the uniformization technique only con-
sists of matrix multiplications and additions (or substractions), therefore
avoiding relatively complicated calculations like the inversion of matrices.
This feature makes it quite easy to implement the model in any program-
ming language.

IN RETROSPECT

Several questions were defined in the introduction on page 12, which will
be shortly addressed here:

a. it has indeed proven possible to extract condition data from the data-
base in order to subject it to a statistical analysis.

b. most of the statistical models and estimation methods proposed for
application to bridge maintenance, are reviewed in Chapter 2, but none
possess all the properties that are desired for the Dutch situation.

c. a continuous-time Markov process is a suitable stochastic process for
modeling the deterioration of structures. It is not as simplifying as
a discrete-time Markov process and it not as intractable as a semi-
Markov process with non-exponential waiting times. A likelihood func-
tion, which consists of a product of transition probabilities, has been
defined. The method of maximum likelihood estimation is most suited
for this non-linear model.

d. a bootstrapping procedure indicates that the model is robust to changes
in the data. The estimates for the model parameters do not deviate
very much when using different data sets obtained by bootstrapping
the original data set.

e. the uniformization method is particularly efficient and well suited for
calculating the transition probability function. Also, its relationship to
the Poisson process enables the calculation of the transition probability
function up to a specified accuracy.
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f. the chosen model estimates that it takes about 45 years for a concrete
bridge to reach state 5, which is a state at which major renovation is
generally required. Due to the large variability in the many factors
which influence the state of a structure, this estimate is very uncertain.
With 90% probability, the time required to reach the fifth state is rougly
between 14 and 96 years.

g. selecting different groups of bridges according to various characteristics
in most cases did not result in significantly different estimates for the
model parameters. Only a selection of structures according to the pop-
ulation density of the province in which they are located, resulted in
significantly different transition intensities.

h. although it may seem interesting to explicitly model inspection vari-
ability in the model, the use of a hidden Markov model turned out to
be practically infeasible. The primary problem is that the true state of
the structure is never known, therefore it is quite difficult to determine
the amount of misclassification by an inspector. Only expert judgment
may be able to offer a quantification of the inspection errors.

i. for finite-state Markov processes, a suitable condition-based inspection
and maintenance model has been defined. It determines the inspection
interval with lowest expected average costs per time unit. A require-
ment for the application of such a model is that the costs of preventive
and corrective repairs are available to the decision maker.

RECOMMENDATIONS

For the particular case of bridge management in the Netherlands, there
are several recommendations for the application of the model proposed in
this thesis. The first is to better record any maintenance activities in the
database, such that backward transitions can more easily be related to
either maintenance or inspection variability. This will allow to filter out
maintenance data such that the deterioration model can be estimated using
‘clean’ condition data. Also, if maintenance activities can be filtered out,
the application of a hidden Markov model for inspection variability may be
possible. With the present data this did not result in satisfactory results.
The application of such a model may also be made easier if inspectors doc-
ument their reasoning behind the choice of a condition state. For example,
if the inspector assigns a better condition to the structure compared to the
previous inspection, he could indicate if this is because maintenance was
performed after the previous inspection or not. In any case, this type of
additional information should be given as a finite number of options by
the system to the inspectors. It is not possible to automate the filtering of
condition data if inspectors are allowed to supply their information in the
form of unrestricted textual comments.
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The database in the Netherlands contains a sufficient number of state
observations for the application of the maximum likelihood estimation. The
bootstrap procedure discussed in the section entitled “Distribution of the
estimated parameters” on page 71, can be used to test if the estimator
displays normality (i.e., if it is Gaussian). This test is particularly valuable
for those states which are less frequently observed. However, the bootstrap
is a computationally expensive procedure and it is important to ensure that
the accurracy of the calculations is sufficiently high such that the outcome
is not distorted. This research did not consider the situation where very
little or no condition data is available. For those applications where this is
the case, a Bayesian approach could be developed.

This research has shown that a finite-state Markov process is very well
suited for use in a Dutch bridge management system. In order to complete
the maintenance model with a decision model, it is necessary to develop a
dependable cost model. This means that the costs of various maintenance
actions must be quantified as a function of the existing condition state, the
type of component or building material, and the age of the structure. This
is a challenging problem because the condition rating scheme is specifically
designed not to represent the actual size of damages. Past experience, com-
bined with expert judgment, can be used to estimate maintenance costs.

The inspection intervals which are obtained using the condition-based
maintenance model presented in Section 5.2, are often quite long. This is
because the policy is assumed to start at the service start of the structure
and structures deteriorate relatively slow. In most cases, structures are
not new at the time of the analysis and have already undergone one or
more inspections. Shorter and more reasonable inspection intervals may
be obtained by adding the first inspection as a separate decision variable
or by starting from the current state and age of the structure. The latter is
mathematically possible due to the memoryless property of the continuous-
time Markov process.

Finally, the problem at hand is a typical problem of decision making
under uncertainty. Inspections are a tool to gain more information and
therefore to reduce the uncertainty in the rate of deterioration of struc-
tures and their elements. However, it is not possible to acquire complete
information and there is no true model to predict the lifetimes of struc-
tures. The best recommendation is therefore to use common sense when
making any decision!
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7
Appendix: transition probability function

Define the transition probability function as

pij(s, t) = Pr{X(t) = j |X(s) = i}. (7.1)

This function gives the probability of moving from state i at time s ≥ 0 to
state j a period t− s ≥ 0 later. Let P (s, t) = ‖pij(s, t)‖ be the transition
probability function matrix. P (s, t) = I for all s ≥ 0 if t = s and P (s, t)
is stochastic, that is:

∑
j pij(s, t) = 1 for all i. If the process is time-

homogeneous, then P (s, t) = P (0, t − s) with the equivalent shorthand
notation defined as

pij(0, t− s) ≡ pij(t− s) = Pr{X(t− s) = j |X(0) = i}. (7.2)

This chapter deals with how to efficiently calculate the transition prob-
ability function and its sensitivity towards the model parameters. The
parameters in the context of Markov processes are the transition intensi-
ties which, as is the case for inhomogeneous Markov processes, may be a
function of the process age.

7.1 HOMOGENEOUS MARKOV PROCESSES

7.1.1 KOLMOGOROV EQUATIONS

The transition probability function is the solution to the forward and
backward Kolmogorov equations. For a continuous-time Markov process
with constant transition intensities, these are given by P ′(t) = P (t)Q
and P ′(t) = QP (t) respectively. The well known solution to these dif-
ferential equations is the matrix exponential as defined in Equation (2.6):
P (t) = exp{Qt}. There are a number of ways to show that this is the so-
lution to the Kolmogorov equations. One approach is to use the transition
probability function in Equation (2.4) and use a Laplace transformation
to derive this result, see e.g., Howard (1971). The set of linear differential
equations defined by the Kolmogorov equations can also be solved by the
method of successive approximations. This is demonstrated next.

Take the backward Kolmogorov equations, then these define a boundary
value problem of the form
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X ′ = QX, X(0) = I,

where I is the identity matrix. Assume that a solution X = P (t) exists,
then the integral equation

P (t) = I +
∫ t
u=0
QP (u) du (7.3)

is equivalent to the boundary value problem in the sense that any solu-
tion of one is also a solution of the other. This can easily be verified by
setting t = 0 to obtain the initial condition P (0) = I and by taking the
derivative towards t to obtain the set of differential differential equations
P ′(t) = QP (t). The derivation can be done because the solution P (t) is
assumed to be a continuous function andQ is constant over the range of in-
tegration. The initial approximation is the boundary condition P (0)(t) = I.
Substitution into Equation (7.3) yields the second approximation

P (1)(t) = I +
∫ t
u=0
QP (0)(u) du = I +Qt+Q2 t

2

2
.

Through proof by induction, it is straightforward to show that

P (n)(t) = I +Qt+Q2 t
2

2
+ · · ·+Qn t

n

n!
for n → ∞. Then, by the definition of the matrix exponential in Equa-
tion (2.6), P (n)(t)→ exp{Qt}.

7.1.2 MATRIX EXPONENTIAL

The definition of the matrix exponential in Equation (2.6) is restated here:

exp{Qt} = I +Qt+Q2 t
2

2!
+Q3 t

3

3!
+ · · · (7.4)

Although the calculation of the matrix exponential may look trivial, it is
certainly not. The formulation as an infinite series is an analytical result,
but in practice it is impossible to calculate an infinite number of terms.
A quasi analytical solution is to calculate the infinite series up to a large,
but finite number of terms. According to Moler and van Loan (1978), the
standard Taylor series approximation, achieved by truncating the infinite
series in Equation (7.4) after a convergence criterion has been reached, is
slow and prone to errors if a low floating point accuracy is used. The errors
are due to rounding during the matrix multiplication and these in turn are
a result of the presence of both positive and negative elements in the matrix
Q, see e.g., Ross (2000, p.350).
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There are many ways to calculate the matrix exponential and Châtelet
et al. (1996) grouped these in three categories:

1. numeric: integration methods for ordinary differential equations like
e.g., the Euler and Runga-Kutta schemes,

2. analytical: e.g., using the Laplace transformation and the method based
on matrix diagonalization,

3. quasi or partially analytical: e.g., exponential limit method and uni-
formization.

Matrix diagonalization

Assume that A is a square matrix of size n × n and has n linearly inde-
pendent eigenvectors, then the matrix A is diagonalizable, i.e., it can be
written in the form A = PDP−1, where D is a diagonal matrix. Matrix
diagonalization is equivalent to finding the eigenvalues (and the eigenvec-
tors) of A, because the eigenvalues form the diagonal in D. If A can be
diagonalized, it holds that

exp{A} = P exp{D}P−1,

where exp{D} is easily obtained by exponentiating the elements in the
diagonal of D. The method of matrix diagonalization for calculating the
exponential of a square matrix is an analytical method. A sufficient con-
dition for the matrix A to be diagonalizable, is that no two eigenvalues
are the same (i.e., all n eigenvalues have multiplicity 1). By definition
this excludes the possibility to model sequential continuous-time Markov
processes with identical waiting times in each state. Other models may not
have this problem, but numerical procedures as part of a maximum likeli-
hood estimation may incidentally result in (nearly) identical eigenvalues.

Uniformization

Uniformization, also known as randomization, is a fairly well known way
of computing the matrix exponential for Markov processes, see e.g., Tĳms
(2003) or Kohlas (1982). This approach is essentially an adapted Taylor
series approximation. The uniformization technique makes the series ap-
proximation converge faster, avoids the rounding errors due to the negative
elements in Q, and also has a nice probabilistic interpretation.

Using the transition intensity matrix Q with elements defined in Equa-
tion (2.7), a new discrete-time Markov process Xt is generated by setting
the one-step transition matrix to

pij =
{

1− λi/λ, if i = j,
(λi/λ)pij , if i 6= j,
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where λ ≥ λi for all i. If we now define a new continuous-time Markov
process like X(t) = XN(t), then we get a Markov process where the tran-
sition times are generated by a Poisson process with rate λ > 0 and state
transitions are generated by pij . Whereas the process with intensity matrix
Q (possibly) has a different rate for each state i, the new process has an
intensity matrix Q with the same rate λ for each state:

qij =
{
−λ, if i = j,
λpij , if i 6= j.

If we use matrix notation, we say that P = Q/λ+ I and we can calculate
the matrix exponential as

P (0, t) = eQt = eλt(P−I) = eλtP e−λtI =
∞∑
k=0
e−λt

(λt)k

k!
P
k
. (7.5)

For the fastest convergence of the series approximation, λ should be chosen
as small as possible, but no smaller than the largest λi, otherwise P will
not be a stochastic matrix (i.e., not all rows sum to one). The best choice
is therefore λ = maxi λi.

When approximating Equation (7.5) by calculating the series up to k =
M , the truncation error is given by the remainder of the series:

r1(λ, t,M) =
∞∑

k=M+1
e−λt

(λt)k

k!
P
k
.

In order to determine how large M should be, it is necessary to assess the
size of the truncation error. For this purpose, it is possible to calculate an
upper bound for the error and this requires a matrix norm. Heidelberger
and Goyal (1988) incorrectly use a matrix 1-norm, whereas the matrix
infinity norm (maximum absolute row sum) defined as

‖A‖∞ = max
i

∑
j

|Aij |, (7.6)

is better suited, because ‖P k‖∞ = 1 for all k = 0, 1, 2, . . . . Using the trian-
gular inequality with the matrix norm, the upper bound of the truncation
error is

‖r1(λ, t,M)‖∞ ≤
∞∑

k=M+1
‖P k‖∞e−λt

(λt)k

k!
= 1− Pλt(M),

where Pφ(n) is the cumulative Poisson distribution with parameter φ ≥ 0.
So using Equation (7.6), the error r1(λ, t,M) is conveniently bounded by
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the area under the tail after M terms of the Poisson distribution with
parameter λt.

7.2 NON-HOMOGENEOUS MARKOV PROCESSES

This section deals with an extension of the homogeneous Markov processes
where time- or age-dependent transition intensities are allowed for. In the
theory of linear systems, these are also referred to as ‘time-variant’ systems,
because their primary driver (which are the transition intensities) vary over
time. Yet another term is ‘in- or non-stationary’, which is commonly used
for discrete-time Markov chains which have time varying transition proba-
bilities. The terminology ‘inhomogeneous’ Markov processes is used here,
due to their close relationship with the inhomogeneous Poisson process.

7.2.1 KOLMOGOROV EQUATIONS

Let fi,t(u), with u ≥ 0, be the probability density function of the random
waiting time in state i for a continuous-time Markov process (observed) at
time t. From the time-invariant definition of the cumulative exponential
distribution in Equation (2.5), this density may be defined as fi,t(u) =
λi(t) exp{−λi(t)u}. From

pij(t, t+ u) = Pr{transition from state i to j in (t, t+ u]}
= Pr{Ti,t ≤ u, JN(t)+1 = j, JN(t) = i}

= pij Pr{Ti,t ≤ u |JN(t)+1 = j, JN(t) = i}

= pij
∫ u
s=0
fi,t(s) ds

= pijfi,t(u)u+O(u)

and because fi,t(u) ≈ λi(t) for a small u, it holds that pij(t, t + u) =
pijλi(t)u+O(u). Using this result, the following lemma may be deduced:

lim
u→0

1− pii(t, t+ u)
u

= λi(t)

and

lim
u→0

pij(t, t+ u)
u

= λi(t)pij .

In this section, the forward and backward Kolmogorov equations for time-
variant or inhomogeneous Markov processes are derived. These are

∂P (s, t)
∂t

= P (s, t)Q(t) (7.7)
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and

∂P (s, t)
∂s

= −Q(s)P (s, t) (7.8)

respectively. Either one of these two equations can be used to describe the
dynamics in time of the Markov process. Given a transition rate matrix
Q(t), the Kolmogorov equations give the solution to the transition proba-
bility function P (s, t). In other words: the characteristics of the Markov
process are determined by the choice for Q(t) and P (s, t) is determined by
solving one of the Kolmogorov equations Equation (7.7) and Equation (7.8).
The Chapman-Kolmogorov equations are given by

pij(s, t) =
∑
k

pik(s, s+ u)pkj(s+ u, t), (7.9)

where s ≤ s+ u ≤ t. From Equation (7.9) we obtain

pij(s+ u, t)− pij(s, t) =∑
forallk 6=i

−pik(s, s+ u)pkj(s+ u, t) +
[
1− pii(s, s+ u)

]
pij(s+ u, t).

Hence,

lim
u→0

pij(s+ u, t)− pij(s, t)
u

= lim
u→0

{∑
k 6=i
−
[
pik(s, s+ u)

u

]
pkj(s+ u, t) + · · ·

+
[

1− pii(s, s+ u)
u

]
pij(s+ u, t)

}
.

The limit can be taken inside the summation (see for example Ross (1970))
to reveal the backward Kolmogorov equations:
∂

∂s
pij(s, t) =

∑
k 6=i
−λi(s)pikpkj(s+ u, t) + λi(s)pij(s+ u, t). (7.10)

Define

qij(t) =
{
−λi(t), if i = j,
λi(t)pij , if i 6= j. (7.11)

Using Q(t) = ‖qij(t)‖, Equation (7.10) can be written in the matrix nota-
tion given by Equation (7.8).

For the forward Kolmogorov equation, a similar approach can be used
to derive Equation (7.7). Using the Chapman-Kolmogorov equation again
with s ≤ t− u ≤ t, the following result is obtained:
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pij(s, t)− pij(s, t− u) =∑
k 6=j
pik(s, t− u)pkj(t− u, t)−

[
1− pjj(t− u, t)

]
pij(s, t− u).

Dividing both sides by u and taking the limit u→ 0, a scalar representation
of the forward Kolmogorov equation is obtained:

∂

∂t
pij(s, t) =

∑
k 6=j
pik(s, t− u)λk(t)pkj − λj(t)pij(s, t). (7.12)

Using the definition Equation (7.11) and a matrix notation, Equation (7.12)
results in Equation (7.7).

It is tempting to write

P (s, t) = exp
{∫ t
u=s
Q(u) du

}
(7.13)

with

exp
{∫ t
u=s
Q(u) du

}
=

I +
∫ t
u=s
Q(u) du+ 1

2

∫ t
u=s
Q(u) du

∫ t
v=s
Q(v) dv + · · ·

as the solution for nonhomogeneous Markov processes, like Howard (1971)
did on page 843. Unfortunately this is not a general solution, which can
be easily shown by taking the derivative (Kailath (1980, Chapter 9)):

∂

∂t
exp
{∫ t
u=s
Q(u) du

}
=

Q(t) + Q(t)
2

∫ t
u=s
Q(u) du+

∫ t
v=s
Q(v) dvQ(t)

2
+ · · ·

6= exp
{∫ t
u=s
Q(u) du

}
Q(t).

The solution in Equation (7.13) only holds if Q(t) and
∫
Q(u)du commute,

which is not the case for most practical applications. The true general solu-
tion may be found in using a similar approach as with the homogeneous case
in Section 7.1.1. Equivalent to Equation (7.3) for the time-homogeneous
process, the solution of the forward Kolmogorov Equation (7.7) may be
written in the form of an integral equation:

P (s, t) = I +
∫ t
u=s
P (s, u)Q(u) du. (7.14)
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The successive approximations are:

P (0)(s, t) = I,

P (1)(s, t) = I +
∫ t
t1=t0
Q(t1) dt1,

P (2)(s, t) = I +
∫ t
t2=t0
Q(t2) dt2 +

∫ t
t2=t0

{∫ t2
t1=t0
Q(t1) dt1

}
Q(t2) dt2

up to

P (n)(s, t) = I +
∫ t
t2=t0
Q(t2) dt2 +

∫ t
t2=t0

{∫ t2
t1=t0
Q(t1) dt1

}
Q(t2) dt2,

. . .+
∫ t
tn=t0

∫ tn
tn−1=t0

· · ·
∫ t2
t1=t0
Q(t1)Q(t2) · · ·Q(tn) dt1 dt2 · · · dtn.

where s = t0 < t1 < · · · < ti < · · · < tn ≤ t. If n → ∞, then P n(s, t) →
P (s, t) and the resulting series approximation

P (s, t) = I + · · · (7.15)

+
∞∑
n=1

∫ t
tn=t0

∫ tn
tn−1=t0

· · ·
∫ t2
t1=t0
Q(t1)Q(t1) · · ·Q(tn) dt1 dt2 · · · dtn,

is known as the Peano-Baker series. Convergence of this successive approx-
imation is proven by Dacunha (2005) for the standard problem x′(t) =
A(t)x(t),x(t0) = x0 in the theory of linear systems. It should be no sur-
prise that, for a stationary process with Q(t) = Q, the Peano-Baker series
solution in Equation (7.15) reduces to

P (0, t) = I +Qt+Q2 t
2

2!
+Q3 t

3

3!
+ · · · ,

which is, of course, the same as the result in Equation (2.6). This Taylor
series solution has no intuitive (i.e., probabilistic) interpretation, therefore
the Peano-Baker series solution in Equation (7.15) does not either. But,
as in the stationary case, uniformization can be used to transform this
solution to one with a probabilistic interpretation.

7.2.2 PRODUCT INTEGRATION

The formulation of the transition probability function in Equation (7.14) as
an integral equation is merely an equivalent formulation of the solution to
the forward Kolmogorov equations defined in Equation (7.7). The integral
equation does not actually give the solution, it merely reformulates the
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problem itself. In this section, another formulation is introduced: the
product integral, which is denoted by

P (s, t) = R
(s,t]

(I +Q( dτ)), (7.16)

where I is the identity matrix and Q(t) the transition intensity matrix as
a function of time t. The notation P was suggested by Gill and Johansen
(1990) and is related to the product

∏
like the integral

∫
is related to the

sum
∑

.
The formal definition of the product integral is the following:

R
(0,t]

(1− f( dt)) = lim
maxi |ti−ti−1|→0

∏
i

(1− (f(ti)− f(ti−1)))

where the limit is taken over a sequence of ever finer partitions of the
interval [0, t]. The function f must be a real valued, cadlag function of
bounded variation, defined on the finite interval [0, t] ⊂ R. The definition
may be extended to cases with more than two states. Let F be a n ×
n matrix valued function of bounded variation in which each component
is right continuous with left hand limits. The product integral over the
interval [0, t] is now simply defined as

R
(0,t]

(I + F (dt)) = lim
maxi |ti−ti−1|→0

∏
i

(I + F (ti)− F (ti−1)).

As is proven in Gill and Johansen (1990), the transition probability ma-
trix defined in Equation (7.16) using the product integral has the required
properties, i.e.

− P (s, t) is a stochastic matrix, since each row sums to one,
− P (s, t) = P (s, u)P (u, t) for 0 ≤ s ≤ u ≤ t ≤ ∞,
− P (s, s) = I with 0 ≤ s and
− P (s, t)→ I as t ↓ s.

Most importantly, it is shown by Gill and Johansen (1990) that the product
integral defined in Equation (7.16) is the unique solution to the forward and
backward Kolmogorov equations. The transition probability matrices for
both the continuous-time Markov process (with constant transition rates)
and the discrete-time Markov process (with transitions at fixed discrete
time points) are special cases of P (s, t). This can be easily shown and is
done in the next section.

Special cases

Consider the continuous-time Markov process with transition intensity ma-
trix Q. We want to derive that P (s, t) = P (0, t − s) ≡ P (t − s) =
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exp{Q(t − s)}, similar to Equation (2.6). If we define an equidistant par-
tition on the interval [s, t]: s = t0 < t1 < t2 < . . . < tN−1 < tN = t with
ti = s+ i(t− s)/N , then

P (s, t) = lim
N→∞

N∏
i=1

(1 +Q(ti)−Q(ti−1))

= lim
N→∞

N∏
i=1

[
1 + Q(t− s)

N

]

= lim
N→∞

[
1 + Q(t− s)

N

]N
(7.17)

= exp{Q(t− s)},

which is the well known solution for continuous-time Markov processes. If
we assume that transitions can only occur at discrete points in time, we get
a discrete-time Markov process. Assume that s, t = 0, 1, 2, . . . with s < t
and let N = t − s such that the interval has partitions of size 1. Since N
is fixed, Equation (7.17) reduces to P (s, t) = [I +Q]t−s. As

qij = lim
dt↓1

Pr{X( dt) = j |X(0) = i} = Pr{X(1) = j |X(0) = i} = pij

for i 6= j and qii = −
∑
j 6=i pij , we get that P (s, t) = P t−s. This is

again the familiar solution for discrete-time Markov chains (with P being
the one-step transition probability matrix) under the assumption that the
process is stationary (or time-homogeneous).

7.2.3 EULER SCHEME

The transition probability function P (s, t) is the solution to the forward
and backward Kolmogorov equations, which are differential equations for
which many numerical approximation techniques exist. The Euler scheme
is the most simple technique which approximates the derivative with a finite
difference. For example, for the forward Kolmogorov Equation (7.7) this
means that [

P (s, t)− P (s, t−∆t)
]
∆t−1 = P (s, t−∆t)Q(t),

which yields

P (s, t) = P (s, t−∆t)(Q(t)∆t+ I)

for t ≥ s + ∆t and with a sufficiently small step size ∆t. A standard
procedure for the application of the Euler scheme is to partition the time
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interval [s, t] in N parts, such that ∆t = (t − s)/N and tk = s + ∆t for
k = 0, 1, . . . , N . The transition probability function may then be iteratively
approximated starting with P (s, s) = I and continuing with P (s, tk) =
P (s, tk−1)(Q(tk)∆t+ I), k = 1, 2, . . . , N .

The efficiency of this approach of course depends on ∆t. The step size
must be chosen sufficiently small to ensure adequate accuracy, but a very
small step size will require a large number of matrix multiplications. Note
the similarity of the Euler scheme with the approach used in the section
titled “Special cases” on page 121 for the product integral. Approximating
the product integral formulation of the transition probability function in
Equation (7.16) with a large, but finite, number of products is therefore the
same as approximating the Kolmogorov equations using the Euler scheme.

7.2.4 UNIFORMIZATION

Similar to van Moorsel and Wolter (1998), P (t) = Q(t)/λ+ I can be used
to derive the uniformization equation for inhomogeneous Markov processes.
Starting from the Peano-Baker series in Equation (7.15) this results in:

P (s, t) = (7.18)
∞∑
n=0

(λt)n

n!
e−λt
∫ t
tn=t0

∫ tn
tn−1=t0

· · ·
∫ t2
t1=t0
P (t1) · · ·P (tn)

n!
tn

dt1 · · · dtn,

where λ > 0 is now chosen such that

λ ≥ inf
t∈(s,t]

|Qij(t)|.

Equation (7.18) represents a inhomogeneous Markov process where the
transition times occur according to a Poisson process with rate λ > 0 and
transitions in the embedded Markov chain are performed according to P (t).
The product P (t1)P (t2) · · ·P (tn) is the n-step probability of transitions
occurring at times {t1, t2, . . . , tn}. The integration is done over all possible
sets {t1, t2, . . . , tn} and n!/tn is the density of the order statistic of an n-
dimensional uniform distribution resulting from the Poisson process. The
paper by van Moorsel and Wolter (1998) continues with an algorithm to
compute Equation (7.18), but it is clear that this is not a simple thing to
do.

There is one way to reduce the complexity of Equation (7.18) and that
is to choose the transition intensity matrix such that it can be decomposed
like Q(t) = f(t)Q. In this way, we end up with a transition probability
matrix for the embedded Markov chain which does not depend on time,
i.e., P = Q(t)/f(t) + I = Q + I. As was pointed out by Rindos et al.
(1995), Equation (7.13) is now a correct solution and it is possible to write
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P (0, t) = exp{QΛ(t)} = exp{(Q+ I)Λ(t)− IΛ(t)} =
∞∑
n=0
P
nΛ(t)n

n!
e−Λ(t),

or, more general,

P (s, t) =
∞∑
n=0
P
n [Λ(t)− Λ(s)]n

n!
e−[Λ(t)−Λ(s)], (7.19)

where Λ(t) =
∫ t
u=0 f(u) du. Now we have a inhomogeneous Poisson process

generating the transition times and P defining the transitions of the em-
bedded Markov chain. This approach can only be used if the transition
intensity matrix is of the form Q(t) = Qf(t), where Q is a time-invariant
(or constant) matrix and f(t) ≥ 0 is a scalar function of t. An example of
a matrix which is of this form is

Q(t) =


−a1t

b a1t
b 0 0 0 0

0 −a2t
b a2t

b 0 0 0
0 0 −a3t

b a3t
b 0 0

0 0 0 −a4t
b a4t

b 0
0 0 0 0 −a5t

b a5t
b

0 0 0 0 0 0

,

where f(t) = tb.

7.3 PARAMETER SENSITIVITY

In order to maximize the likelihood function, which includes the matrix ex-
ponential as the transition probability function, it is necessary to assess the
sensitivity of the model towards changes in the parameter values. For this,
it is required to calculate the derivative of the matrix exponential towards
each of the parameters contained in the transition matrix Q. These deriva-
tives can then be used to implement an iterative approximating scheme to
find the values of the parameters which maximize the likelihood function.
If λ = {λ1, . . . , λn} is a vector of all parameters contained in Q(t), the
partial derivative towards one of these parameters is given by

∂

∂λi
P (s, t) =

∫ t
u=s
P (s, u)∂Q

∂λi
P (u, t) du. (7.20)

For a stationary Markov process with constant Q, this becomes

∂

∂λi
exp{Qt} =

∫ t
u=0
e(t−u)Q ∂Q

∂λi
euQ du, (7.21)

which according to Tsai and Chan (2003) is due to Wilcox (1967). It is
interesting to see the similarity with the case of a Markov chain. If we
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assume P is a one-step transition probability matrix, then the derivative
of the n-step probability towards the parameter λi is

∂P n

∂λi
=
n−1∑
k=0
P k
(
∂P

∂λi

)
P n−1−k.

The fact that Equation (7.21) holds for the derivative and not the well
known result for the scalar case, can easily be shown as follows:

∂

∂λi
exp{Qt} =

∞∑
k=0

∂Qk

∂λi
· t
t

k!
=
∞∑
k=0

[
n−1∑
i=0
Qi
(
∂Q

∂λi

)
Qk−1−i

]
tk

k!

6= exp{Qt} · ∂Q
∂λi
,

where the partial derivative of Q towards λi can not be taken outside the
summation due to the fact that matrix multiplication is not commutative
(i.e., the order of multiplication of matrices can generally not be changed:
AB 6= BA).

7.3.1 MATRIX DIAGONALIZATION

Here, the exact analytical derivative of P (s, t) towards the parameters in
Q(t) will be derived under the assumption that Q(t) can be decomposed
into f(t)Q as in the previous section.

The approach is based on the principle that the intensity matrix may
be decomposed as Q = ADA−1, where D is a diagonal matrix with the
eigenvalues of Q on the diagonal and the columns of A are the eigenvectors
of Q. Using diagonalization, the matrix exponential can be simplified as
follows:

P (s, t) = exp
{
Q

∫ t
u=s
f(u) du

}
= A exp{D[Λ(t)− Λ(s)]}A−1.

For ease of notation, let E = exp{D[Λ(t) − Λ(s)]} with elements ei =
exp{di[Λ(t) − Λ(s)]}, i = 1, . . . , n on the diagonal, where di is the i-th
diagonal element of matrix D. In Kalbfleisch and Lawless (1985), the
derivation for ∂P /∂θi is included, but the following essential steps, taken
from Jennrich and Bright (1976), are not mentioned in the derivation.
Using the product rule for differentiation and a shorthand notation dP (s, t)
for the partial derivative of the transition probability function towards one
of the parameters, the following is obtained:

dP (s, t) = ( dA)EA−1 +A( dE)A−1 +AE( dA−1),

such that
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A−1 dP (s, t)A = A−1( dA)E + dE +E( dA−1)A. (7.22)

To obtain the ij-th element, the following can be done:

(A−1 dP (s, t)A)ij =
∑
k

(A−1dA)ik(E)kj + (dE)ij +
∑
k

(E)ik(dA−1A)kj

= (A−1 dA)ijej + (dE)ij + ei(dA−1A)ij ,

where the fact that (E)ij = ej if i = j is used and (E)ij = 0 otherwise.
Using the following from Jennrich and Bright (1976):

A−1A = I ⇒ dA−1A+A−1 dA = 0⇒ dA−1A = −A−1 dA (7.23)

to obtain

(A−1 dP (s, t)A)ij =
{

(ej − ei)(A−1 dA)ij if i 6= j,
dei if i = j. (7.24)

Now dA remains, which can be removed by using a similar combina-
tion of Equation (7.22) and Equation (7.23) for dQ. Namely, by taking
A−1 dQA = A−1 dAD + dD −DA−1 dA. If the non-diagonal elements
are equated, this results in

(A−1 dA)ij = (A−1 dQA)ij
dj − di

for i 6= j,

which can be substituted in Equation (7.24) in order to get

(A−1 dP (s, t)A)ij =
{
ej−ei
dj−di (A

−1 dQA)ij if i 6= j,
dei if i = j.

If we let V = A−1 dP (s, t)A as in Kalbfleisch and Lawless (1985), we get
that

dP (s, t) = AV A−1. (7.25)

The diagonalization approach gives an exact result in the form of Equa-
tion (7.25) to calculate the derivative of the transition probability function.
This allows for the efficient calculation of the sensitivity of the model to-
wards changes in the model parameters. However, this approach assumes
that the matrix Q can be diagonalized, which implicitly assumes that the
necessary computational tools to perform the diagonalization are available
and that the matrix Q is non-singular (i.e., invertible). Problems arise
when Q is close to being singular or when dj = di for i 6= j. Even if the
initial situation is well formed, there is little control over the parameters of
the model when using this approach in a Newton-Raphson iterative scheme.
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Thus the iteration may halt unexpectedly due to the aforementioned prob-
lems.

7.3.2 UNIFORMIZATION

Homogeneous Markov processes

Using the same approach as Heidelberger and Goyal (1988), Equation (7.5)
can be differentiated to λi:

∂

∂λi
P (0, t) =

∞∑
k=0
e−λt

(λt)k

k!
∂

∂λi
P
k (7.26)

and, because
∂

∂λi
P
k = P k−1 · ∂

∂λi
P + ∂

∂λi
P
k−1 · P ,

the derivative of P k can be computed iteratively using the values P k−1 and
its derivative from the previous step. The matrices ∂P /∂λi = λ−1∂Q/∂λi
and P only have to be computed once at the start of the iteration scheme.
Note that when we take λ = maxi λi, we assume λ is just a constant when
taking the derivative to λi.

Like with the matrix exponential, it is also possible to determine the
bound on the error if we calculate the derivative in Equation (7.26) up to
k =M . Let

r2(λ, t,M) =
∞∑

k=M+1
e−λt

(λt)k

k!
∂

∂λi
P
k
.

It is easy to show that ∥∥∥∥ ∂∂λiP k
∥∥∥∥
∞
≤ k
λ

∥∥∥∥∂Q∂λi
∥∥∥∥
∞
,

such that

‖r2(λ, t,M)‖∞ ≤
∞∑

k=M+1

k

λ

∥∥∥∥∂Q∂λi
∥∥∥∥
∞
e−λt

(λt)k

k!

= (λt)
λ

∥∥∥∥∂Q∂λi
∥∥∥∥
∞

∞∑
k=M+1

e−λt
(λt)k−1

(k − 1)!

and therefore the error is again conveniently bounded by

‖r2(λ, t,M)‖∞ ≤
∥∥∥∥∂Q∂λi

∥∥∥∥
∞
t
[
1− Pλt(M − 1)

]
.
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The second derivative may be calculated in a similar fashion. For any two
parameters λi and λj , the derivative of P k can be calculated recursively
as follows:

∂

∂λi
P
k = P k−1 · ∂

∂λi
P + ∂

∂λi
P
k−1 · P ,

and
∂

∂λj
P
k = P k−1 · ∂

∂λj
P + ∂

∂λj
P
k−1 · P .

The second derivative can also easily be calculated recursively:

∂2

∂λj∂λj
P
k = ∂

∂λj
P
k−1 · ∂

∂λi
P + P k−1 · ∂

2

∂λj∂λi
P + . . .

. . .+ ∂2

∂λj∂λi
P
k−1 · P + ∂

∂λi
P
k−1 · ∂

∂λj
P

and because ∂2P /∂λj∂λi = 0, this reduces to

∂2

∂λj∂λj
P
k = ∂

∂λj
P
k−1 · ∂

∂λi
P + ∂2

∂λj∂λi
P
k−1 · P + ∂

∂λi
P
k−1 · ∂

∂λj
P .

Each element in this last equation is calculated in a previous step, therefore
no extra effort (other than a simple addition) is required to calculate the
second derivative. As

‖P ‖∞ = 1 and
∥∥∥∥ ∂∂λiP k

∥∥∥∥
∞
≤ k
λ

∥∥∥∥∂Q∂λi
∥∥∥∥
∞
,

it is possible to determine an upper bound to the second derivative of the
matrix P k:∥∥∥∥ ∂2

∂λj∂λj
P
k
∥∥∥∥
∞
≤ 2(k − 1)

λ2

∥∥∥∥∂Q∂λi
∥∥∥∥
∞
·
∥∥∥∥ ∂Q∂λj

∥∥∥∥
∞

+
∥∥∥∥ ∂2

∂λj∂λi
P
k−1
∥∥∥∥
∞

≤
∥∥∥∥∂Q∂λi

∥∥∥∥
∞
·
∥∥∥∥ ∂Q∂λj

∥∥∥∥
∞
·
{

2(k − 1)
λ2 + 2(k − 2)

λ2 + . . .+ 2
λ2

}
Since{

2(k − 1)
λ2 + 2(k − 2)

λ2 + . . .+ 2
λ2

}
= 2
λ2

k−1∑
i=1
i = 2
λ2

{
k(k − 1)

2

}
,

the final result can be reduced to
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∥∥∥∥ ∂2

∂λj∂λj
P
k
∥∥∥∥
∞
≤
∥∥∥∥∂Q∂λi

∥∥∥∥
∞
·
∥∥∥∥ ∂Q∂λj

∥∥∥∥
∞
· k(k − 1)
λ2

Now because∥∥∥∥∂Q∂λi
∥∥∥∥
∞

=
{

2, if λi, for all i, is in Q or
0, otherwise,

it holds that∥∥∥∥ ∂2

∂λj∂λj
P
k
∥∥∥∥
∞
≤
{
k(k − 1)( 2

λ )2, λi and λj are in Q or,
0, one of λi or λj is not in Q.

To calculate the second derivative of the transition probability function

∂2

∂λj∂λi
P (0, t) =

∞∑
k=0
e−λt

(λt)k

k!
∂2

∂λj∂λi
P
k

up to k = M , we can determine an upper bound on the error defined by
the remainder of the infinite series. Let

‖r3(λ, t,M)‖∞ =
∞∑

k=M+1
e−λt

(λt)k

k!
∂2

∂λj∂λi
P
k
,

then the bound is given by

‖r3(λ, t,M)‖∞ ≤
∞∑

k=M+1
e−λt

(λt)k

k!

∥∥∥∥ ∂2

∂λj∂λj
P
k
∥∥∥∥
∞

≤
∞∑

k=M+1
e−λt

(λt)k

k!
k(k − 1)

(
2
λ

)2
=

∞∑
k=M+1

e−λt
(λt)k−2

(k − 2)!
(2t)2.

If Pφ(n) is the cumulative Poisson distribution with parameter φ ≥ 0, then
the upper bound can be written as

‖r3(λ, t,M)‖∞ ≤ (2t)2[1− Pλt(M − 2)].

Non-homogeneous Markov processes

From a practical point of view, it is not feasible to calculate the deriv-
ative of the time-dependent transition probability function P (s, t) using
the formulation given by Equation (7.18). It is however quite possible to
do this for the randomized version in Equation (7.19), which was derived
under the assumption that the transition intensity could be decomposed as
Q(t) = Qf(t). Let

gk(s, t) = [Λ(t)− Λ(s)]k

k!
e−[Λ(t)−Λ(s)],
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then the derivative of the transition probability function towards the pa-
rameter νi is determined by

∂

∂νi
P (s, t) =

∞∑
k=0

[
∂

∂νi
P
k
gk(s, t) + P k ∂

∂νi
gk(s, t)

]
.

Now the parameter νi will either belong to the constant matrix Q or it will
belong to the time-variant scalar function f(t). The previous result may
therefore be further simplified for either one of both cases:

∂

∂νi
P (s, t) =



∞∑
k=0

∂

∂νi
P
k
gk(s, t), if gk is not a function of νi, or

∞∑
k=0
P
k ∂

∂νi
gk(s, t), if P is not a function of νi.
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